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The interaction of high intensity laser pulses with pre-formed and laser-produced
plasmas is studied. Through experiments and simulations we have investigated stimulated
Compton scattering in pre-formed plasmas and the plasma physics aspects of tunnel-
ionized gases. A theoretical study is presented on the non-linear dynamics of relativistic
plasma waves driven by colinear optical mixing.

The electron density-fiuctuation spectra induced by stimulated Compton scattering
have been directly observed for the first time. A CO2 laser was focused into pre-formed
plasmas with densities ng varied from 0.4—6 x 1016 cm3. The fluctuations corresponding
to backscatter were probed using Thomson scattering. At low ng, the scattered spectra
peak at a frequency shift Aw = kve and appears to be in a linear reéime. At the highest ne,
a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation
of the electron distribution function.

Tunnel-ionized plasmas have been studied through experiments and particle
simulations. Experimentally, qualitative evidence for plasma temperature control by

varying the laser polarization was obtained by the measurement of stimulated Compton
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scattering fluctuation spectra and X-ray emission from such plasmas. A higher parallel
temperature than expected from the single-particle tunneling model was observed.
Simulations indicate that stochastic heating and the Weibel instability play an important role
in plasma heating in all directions and isotropization.

The non-linear dynamics associated with beatwave (A, Ak) excited long
wavelength plasma waves in the presence of strong, short wavelength density ripple have
been examined, using the relativistic Lagrangean oscillator model. This model shows
period doubling that roughly follows Feigenbaum scaling, and a transition to chaos.
However, wavebreaking is found to occur after the first bifurcation, thereby limiting the
applicability of the Lagrangean model. It is found that the origin of this bifurcation is
linked to the stability of an equivalent Mathieu equation to 1/2 subharmonic resonances.
Finally, a PIC-code simulation shows spatial wavenumber peaks displaced Ak/2 on both
sides of the driver frequencies, giving support to the idea that the bifurcation behaviour

may be experimentally observable.
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Chapter 1

Introduction

Although the interaction of lasers with matter has been studied since the
discovery of the laser, the recent availability of extremely high laser intensities has made
it possible to study many new phenomena in this area of physics. In this dissertation we
will study three different topics in the interaction of a very high intensity COp-laser
(peak intensity around 5x10!4 W/cm?) with plasmas. We begin with an experimental
study of the stimulated Compton scattering instability (Drake et al. 1974, Litvak &
Trakhtengerts 1971, Lin & Dawson 1975, Albritton 1975) that can be excited when
such a laser interacts with a preformed underdense plasma. Next we investigate the
plasma physics aspects of the tunneling tonization (Keldysh 1965, Landau & Lifshitz
1967) of gaseous targets. Finally we present a theoretical study of a laser-plasma based
non-linear system that offers the possibility of observing a classical route to chaos
(Feigenbaum 1978).

When a high intensity laser interacts with a pre-formed plasma many non-linear
processes can take place. One class of such processes involving wave-wave interactions
1s called the parametric instabilities. The stimulated Raman scattering instability (SRS)
and the simulated Brillouin scattering instability (SBS) in a plasma were predicted in the
early 70's (Drake et al. 1974, Forslund et al. 1975) and had been observed
experimentally and studied in detail by the middle of the 8(0's ( Bobin et al. 1973, Watt
et al. 1978, Walsh et al. 1984). Although stimulated Compton scattering (SCS) had
been predicted in the early theoretical work, the fact alone that the instability is heavily

damped can explain the lack of early experimental observation of this instability. It was



only recently (Drake et al. 1990) that the first observation of SCS was reported. This is
because through progress in laser performance and a continued increase in sensitivity of
the diagnostics, SCS has become experimentally observable. However, the detailed
characteristics and evolution of the instability were not studied. Using Thomson
scattering of a probe beam as a diagnostic we were able to directly measure for the first
time the frequency spectrum of the density fluctuations driven by SCS (Leemans et al.
1691) in a pre-formed plasma. By time resolving the spectra, a linear convective
saturation was observed for very low density plasmas. At high densities a non-linear
saturation was observed and attributed to a self-induced modification of the electron
distribution function. Fitting the experimental spectra with the theoretically predicted

spectra, we obtained a local estimate for the plasma temperature and density.

Another consequence of the continued increase in available laser intensity of
short pulse lasers is the possibility of creating a dense plasma through tunneling
lonization (Keldysh 1965, Landau & Lifshitz 1978). For a high intensity laser the
associated electric fields can become on the order of the atomic field which binds an
electron to the nucleus, allowing the laser to ionize the atom. In principle this optically
induced ionization must be modelled taking into account the guantum nature of the atom

and the time variation of fields. According to Keldysh's theory however, in the limit

where the Keldysh parameter K = A / -E‘;‘m << 1, one can model the ionization as a
p

process in which the electron tunnels through the suppressed Coulomb barrier of the
nucleus. Here Ejuy is the ionization potential and @ the ponderomotive potential
associated with the laser fields. The probability of tunneling through this suppressed
barrier becomes significant when the electric field of the laser normalized to the atomic

unit of the electric field is larger than 0.01. Once the electron is free, it is assumed to



start at rest and its subsequent motion can be determined by solving the equation of
motion in the presence of plane wave electromagnetic fields (Landau & Lifshitz 1962,
Kaw & Kulsrud 1973, Corkum et al. 1989). In the plane wave limit, conservation of
the canonical momentum requires that the velocity is composed of the usual quiver
velocity vogc in the laser field and a drift velocity. The magnitude and direction of the
drift velocity is dependent on the polarization of the ionizing laser, which suggests that
plasmas with negligible longitudinal temperature Ty and controllable T can be produced
(Corkum et al. 1989, Burnett & Enright 1990).

In a recent experiment, Corkum et al. have shown that in the single particle
regime and long wavelength (10.6 L laser) regime the above description is indeed
valid (Corkum et al. 1989). Although "tunneling ionization" of single atoms has been
studied with both 10 pm (Corkum et al. 1989, Yergeau et al. 1987) and 1 um laser
pulses (Perry et al. 1988, I'Huillier et al. 1983), most of the work on tunneling
ionization of gases has been conducted in a very low pressure gas, i.e. in the single
particle regime. No detailed study of macroscopic plasmas produced using this
mechanism has been made. These plasmas may be unique because the laser intensity
profile I(r,t) and polarization could be used to determine the initial parallel and
perpendicular temperature (Ty ,T | ) of the electrons, the density ne and the ionization
state Z. Such plasmas have applications in the areas of recombination X-ray lasers
(Burnett & Enright 1989, Amendt et al. 1991) and various collective accelerator schemes
(Tajima & Dawson 1979, Joshi et al. 1984, Leemans et al. 1991b).  Furthermore, the
possibility of tailoring the initial 3-D distribution functions may allow the study of basic
kinetic and parametric instability theory issues in plasma physics.

For an X-ray recombination laser, plasmas need to be produced with densities ne
up o 1020 cm-3 and temperatures below 20 eV. In plasma based accelerator schemes it

is desirable to have long regions of homogeneous plasma at fairly high densities ( 1016 -



1018 em-3 ). Itis our goal to check the validity of extrapolating the predictions of the
tunneling ionization model, from a single particle to a space-charge dominated plasma
regime, and to address the plasma physics aspects of tunneling ionization of gases.

Our experimental work shows that in the "plasma regime" the longitudinal
temperatures are higher than those expected from the single particle tunneling model and
that ionization induced refraction clamps the density to n < 10-3 nc. Here ng is the
critical density. Simulations indicate that stochastic heating (Forslund et al. 1985,
Bardsley et al. 1989, Mendonga 1985) and the Weibel instability (Weibel 1959) play a
crucial role in plasma heating and isotropization. To analyze the effect of a time varying
density and/or temperature on SRS and SCS, we have used an approach similar to the
one used by Rosenbluth (Rosenbluth 1972) for inhomogeneous plasmas, to recalculate

the growth rate of these instabilities in a time dependent plasma.

As a third topic in the interaction of high intensity lasers with plasmas we have
studied the non-linear dynamics of a plasma based driven oscillator system. The
behavior of driven non-linear oscillators has received much interest in the last decade
and many different physical systems have been identified exhibiting such phenomena as
bistability leading to hysteresis loops, and the occurrence of subharmonics followed by
a transition to chaos. The behavior of driven relativistic large amplitude electron plasma
waves can indeed be described by model equations essentially reducible to a non-linear
oscillator equation. Such a plasma wave can be resonantly excited by colinear optical

mixing (Rosenbluth & Liu 1972).

We have studied the nonlinear dynamics associated with beatwave (Ao, Ak)
excited long wavelength plasma waves (Ak = wp/c), in the presence of a strong (Sn/n -
0.15 to 0.75), short wavelength density ripple (ki - (5 to 130) Ak). The equation

describing the plasma wave generation is the relativistic Lagrangean oscillator model



(Tang et al. 1985, Horton & Tajima 1985). The goal is to determine the experimental
conditions necessary to observe the different non-linear phenomena. Results are
presented which show period doubling roughly following Feigenbaum scaling
(Feigenbaum 1978), and a transition to chaos, characterized by a strange attractor
resembling a Duffing oscillator sirange attractor. However, wavebreaking occurs before
the second bifurcation, thereby Iimitiﬁg the applicability of the Lagrangean oscillator.
To understand the origin of the first bifurcation we have approximated the Lagrangean
oscillator equation as a driven Mathieu equation and carried out a perturbation analysis
(Szemplinska-Stupnicka & Bajkowski 1986). 1t is found that the origin of this period
doubling is linked to the stability of the Mathieu equation 1/2 subharmonic resonances.
Finally, a PIC-code simulation shows spatial wavenumber peaks displaced Ak/2 on both
sides of the driver frequencies, giving support to the idea that the bifurcation behavior

observed in this simple model may be experimentally observable.



Chapter 2

Stimulated Compton Scattering from Pre-
formed Underdense Plasmas

2.1 Introduction

The induced scattering of electromagnetic waves by resonant electrons in a
plasma, known as stimulated Compton scattering (SCS) (Drake et al. 1974, Litvak &
Trakhtengerts 1971, Lin & Dawson 1975, Albritton 1975) is a problem of fundamental
importance in plasma physics and has applications in laser fusion, laser driven
accelerators (Joshi et al. 1984), free-electron lasers and tunnel ionization of gases.
Historically, SCS has been of interest as a plasma heating mechanism for low density
plasmas where other mechanisms such as inverse bremsstrahlung may be ineffective.
The spectrum of SCS induced fluctuations can provide both density and temperature
information about the plasma. In this chapter we discuss the first direct observation of
the the electron density fluctuation spectra induced by SCS. We show that at low
densities this kinetic instability stays in the linear convective regime. However, as the

density is increased a non-linear saturation is seen to occur.



2.2 Stimulated Compton Scattering

The SCS instability (off electrons) is the low-density or high-temperature—or
large kApe—limit of stimulated Raman scattering (SRS) (Drake et al. 1974). Here & is
the wavenumber of the density fluctuation responsible for the scattered light, Ape =
[(KTe)(4mnee2))1/2 is the plasma Debye length, KT is the electron ternperature and ne
is the electron density. In the SRS instability, the pump electromagnetic wave, with
wavevector kg and frequency @y, scatters off an instability-generated electron plasma

wave, which satisfies the Bohm-Gross dispersion relation

AG? = 02 +3 K2 v 2.1)

In the SCS case, the electron plasma wave is heavily Landau damped and the pump and
scattered light waves interact directly with the resonant thermal plasma electrons rather
than through a collective mode of the plasma. Another consequence of the plasma mode
being heavily damped is the experimental inaccessibility of this instability. One needs a
very strong pump and sensitive diagnostics to observe significant levels of SCS density
fluctnations. This alone explains the lack of experimental data on the SCS instability.
The only previous experimental observation was by Drake et al. (Drake et al. 1990). In
their experiment exploding foil plasmas were used. The Compton instability was
studied by monitoring a single wavelength of the scattered light close enough to the
. pump-laser wavelength to ensure that the radiation was emitted by a low density plasma
(high kAD¢). This is in contrast to the experiment reported here where it is precisely the
details of the scattered spectrum that allow us to draw conclusions regarding the physics
of the interaction. In this experiment an intense CO? laser drives SCS in a low density,
pre-formed plasma. The density fluctuations are probed using Thomson scattering of a

visible probe laser beam,



In a finite length plasma, Compton scattering can be described as the convective
amplification, by the Compton instability, of some noise-level spectrum. The noise
spectrum is taken to be thermal Thomson scattering (Sheffield 1975) off the pre-formed

plasma

PN(@, 1=0) = C e (11 -2€12 £y 1222 D) ), 2.2)
£ £

where © is the frequency shift of the scattered light, £ = (1+ %e), fe (fj) is the electron
(ion) velocity distribution function and C is a constant dependent upon geometrical

factors. The spatial growth rate x(Aw, kApe) for backscattering modes with k = 2kg is
given by (Drake et al. 1974)

XelAw, kADe)
1 + ye(Aw, kADe)

K(A®, KADe)= 2(vo/c)? 22 Im (2.3)

where vy/c is the normalized electron quiver velocity in the electric field of the pump and
XelAw, kADe) is the usual electron susceptibility. Equation (2.3) is valid away from
the strongly driven regime which for our densities and laser intensities is satisfied
(Drake et al. 1974, Forslund et al. 1975). Also, since the SCS fluctuations propagate in
a direction normal to the incident laser electric field, i.e. k . vy = 0, the expression for
Xe(Aw, kApe) is thought not to be affected for the case where v, > ve , Where vp =
(]('Te/m)l/2 is the electron thermal velocity (Bernard et al. 1989). However, this issue
clearly needs further theoretical attention. The scattered COp power Pg(Aw, L) is just
Pg(Aw, L) = Py exp(x L) where Py is the noise spectrum, taken to be due to thermal
Thomson scattering off the pre-formed plasma (Sheffield 1975) and L is the length of
the convective amplifier. Since the Thomson scattering probe measures the density
fluctuations associated with the CO2 laser backscatter at one point in space z, the

spectrum is then of the form



PTS(Aw, t) = A PN(Aw, kADe, 1=0) exp[k(Am, kADe) ¢ 1] for t <T (2.4a)

= A PN(A®, kADe, t=0) explk(Aw, kApe) ¢T Jfor t >T  (2.4b)
where we have assumed the group velocity of the light wave to be ¢ for the underdense
plasmas, T is the transit time of the scattered wave to the point zand A is a fitting
parameter.
As can be seen in Fig.(2.1), the effect of increasing kADe beyond about (1.3 in
Eqs.(2.4a) and (2.4b) is to significantly broaden the range of frequency shifts Aw which
have significant growth, leading to scattered spectra with widths becoming on the order

of the maximurn shift.
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Figure 2.1: Stimulated Compton scattering growth rate y/wp = ¢ K/@p vs.
Aw/wy for different values of kAp



For small kAp¢ the wavelength of the ponderomotive potential, resulting from the beat
between the pump and the scattered light, is longer than the Debye length so that the
"beat" can see a high frequency resonance in the Debye cloud, at the Bohm-Gross
frequency. Hence, the growth rate is large and the spectrum narrow. However, as
kZpe increases the interaction of the "beat" with the plasma is now heavily damped and
dominated by resonant thermal electrons rather than the resonance in the dielectric

function. As a consequence the growth rate is low and the spectrum is broad.

A second consequence of kApe increasing is that the ratio of phase velocity of
the "beat” to the thermal velocity reduces Fig.(2.2). If the wave amplitude is large
enough to trap background electrons, a self-induced modification of the distribution can

occur, which as we will show, can be the main saturation mechanism of the instability.
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& \ :
] N\ :
840 j
20 RS B 1
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Ky

Figure 2.2: Ratio of phase velocity of SCS driven plasma wave and
thermal velocity vy vs. kAp,
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2.3 Experimental Results

2.3.1 Experimental Set-up

The experimental apparatus is as follows. The laser driving the instability 1s a
CO2 laser operating at 10.6 pm with a measured output pulse rise time of about 100 ps
and a full width at half maximum of about 270 ps. For these experiments the peak
power is varied up to about 150 GW giving a focused intensity of about 1014 W/em?2 in
a measured spot size of 340 um diameter. The plasma source is a 1 cm long, multiple-
cathode, pulsed (10 ps), high-current (2.5 kA) arc discharge in hydrogen {Fig.(2.3) and
(2.5)] or argon [Fig.(2.4)] gas. The resulting electron density can be varied from less
than 1013 to more than 1017 cm-3 by varying the fill pressure of the gas, the peak
discharge current, and the elapse time between the start of the discharge and the CO2
laser pulse. For elapse times larger than 10 ps, the arc plasma is fully ionized to Z=1.
In the Thomson scattering setup, the frequencj-doubled Nd:YAG laser probe beam (150
ml, 5 ns) and the scattered light collection optics are arranged to phase match to density
fluctuations with wavenumber (2 % 0.2)kg. The scattered light is sent through a
spectrograph, with a spectral dispersion of 8 A/mm, to the 10 mm long slit of a streak
camera. The temporal (spectral) resolution of the system is 10 ps (0.2 A). For time-
integrated measurements, a linear detector array replaces the streak camera. A

spectrometer and pyroelectric linear array are used to record the spectrum of the CO2

backscatter signal.
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2.3.2 Observation of Linear Convective Saturation

To access a parameter space which is unambiguously in the Compton regime,
we reduced the arc-plasma density until the scattered signals appeared broad on the
linear array detectors indicating, as described by Eq.(2.3), that kAp, is larger than 0.3.
In Figs.(2.3a) and (2.3b) time-integrated CO7 backscatter and Thomson scatter spectra,

respectively, are shown from low plasma densities.

100 Backscattered pump | | 100 .1 Scattered probe
= P/ =4x1 08 = f n/n =4 x 103
EE . ; :S' i ; .
w® | ©
o C
Rey - 2 -
block | ]
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-1 .
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2
0 j ; i }

20 O 20 40 60 80 100 120
cm’
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Figure 2.3 Time-integrated CO7 backscatter spectrum (a) and probe
beam Thomson scatter spectrum (b) from a low density hydrogen plasma
and time-integrated probe beam Thomson scatter spectrum from a high
density plasma (c). The three spectra are from different laser shots. The

peaks at zero shift are from SBS [physically blocked in (a)]. The horizontal
bars indicate the instrument width,
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Both spectra exhibit a sharp edge on the high-frequency side and a gradual reduction on
the low frequency side as expected from the frequency-dependence of the growth rate.
‘This is in contrast to the scattered signals from high density plasmas with kApe < 0.3
which show a sharp, instrument-limited peak characteristic of the Bohm-Gross
frequency shift [Fig.2.3(c)].

To quantitatively compare the experiment with the linear theory, we time
resolved the Thomson scattering data. Figure 2.4(a) shows the frequency spectrum of

the Thomson-scattered light versus time.

Counts

Figure 2.4 (a) Streak camera image of the Thomson-scattered
probe beam in an argon plasma. Although not shown here, there was no
blue-shifted spectral feature visible in the original data. The white bar
indicates the location of a 100 x attenuator for SBS. The peak intensity is
1.5 x 1014 w/em?2. (b) Line-out of streak data (solid curve) taken along
the direction of the arrow and best fit from Compton theory (dashed curve).
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We see a feature with an approximately 8 A red-shift (28 cm-1) from the 5320 A
probe light which we identify as light scattered by electron density fluctuations
associated with SCS. This feature is followed in time by an essentially unshifted feature
due to stimulated Brillouin scattering (SBS) (Forslund et al. 1973) driven ion acoustic
waves. Note that the lack of a blue-shifted feature verifies that these are laser-driven
density fluctuations (non-thermal) propagating in the same direction as the CO? laser
beam.

To fit the data to a linear SCS theory, line-outs were taken at a time before
convective saturation, as shown in Fig.(2.4a). Equation (2.4a) is used to fit the data.
An enhanced noise level about 5 times nominal thermal level was used as it produced a
better fit to the data. Values for kApe and ne are adjusted to fit the shape and scale of
the theoretical spectrum to the experimental spectrum. Using Eq.(2.4a) with T=25 ps
(the transit time for the scattered light wave), vy/c is adjusted to scale the peak amplitude
of the theoretical spectrum to that of the measured spectrum. Effectively, vo/c is some
average value over the growth time. The parameters which best fit the data are vy/c =
0.08, ne = 4 x 1015 cm3 and kApe =1.5 so that Te = 120 ¢V, The inferred plasma
density agrees roughly with line-average interferometric density measurements made
under similar arc discharge conditions. We do not expect the density to change due to

collisional or tunneling ionization since the rates for these processes are too slow (see

Chapter 3 for details). Since kADe is about 1.5, the phase velocity vg for the strongest
mode is v¢=1.0ve putting it right in the bulk of the electron distribution function. The
ponderomotive potential from the beating of the pump and scattered ;Icctromagnctic
waves is thus at a velocity where it can directly manipulate the electron distribution
function. However, for this very low density case, the SCS reflectivity is too low to

allow, through the Manley-Rowe condition, much transfer of power to the plasma. The
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scattered spectrum does not show a pronounced variation with time indicating that the

electron distribution function is not being significantly altered.

2.3.3 Observation of Non-linear Saturation

2.3.3.1 Experimental Results

The situation is quite different at higher densities and higher reflectivities.
Figure 2.5(a) shows a streak camera image of the 2k, density fluctuation spectrum for a
ten times higher density plasma and a three times higher laser intensity than in
Fig.(2.4a). We see the instability start off at a 23 A red-shift (78 crn‘z). From a line-
out through the spectrum, taken at a time when the signal has reached about 60% of the
peak level (25 ps into the scattered pulse), we infer the parameters vp/c = 0.02, ne = 6 x
1016 cm3 and kApe = 0.6 so that Te = 200 eV and vg/ve = 2.2.

Examination of the inner or more intense contours of Fig.(2.5a) shows that the
spectrum makes a fairly sudden turn towards lower frequency and the lower frequencies
become suddenly enhanced at about the same time that the original 23 A feature
saturates. Line-outs of Fig.(2.5a) representing the time histories of four frequencies (as
marked by arrows on the streak image) are shown in Fig.(2.5b). We see the
enhancement of the growth rate of the 22 A-shifted light coincident with the saturation of
the 23 A feature, Also, we see the smaller frequency shifts peaking progressively later
in time. The 16 A-shifted light peaks well after the 23 A feature saturates indicating that
the saturation of the 23 A feature was not due to an absence of the pump. The frequency

spectrum during the final state of the instability is similar to the large kAp, spectrum of
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Fig.(2.4a) in that it extends down to Aw =k vg= 1.1 kve. That is, the instability

involves particles in the bulk of the distribution function.
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Figure 2.5: (a) Streak camera image of the Thomson scattered probe
beam in a hydrogen plasma. Although not shown here, there was no blue-
shifted spectral feature near 20 A visible in the original data. (The feature at
8 A of red-shift, which does have a blue-shifted counterpart, is due to mode
coupling of driven fluctuations with the SBS acoustic wave (Darrow et al,
1985) due to the presence of 2 weak second frequency in the laser pulse for
this particular data shot). The white bar indicates the location of a 100 x
attenuator. The peak intensity is 5 x 1013 W/em?2. (b) Line-outs taken
along the direction of the four arrows in (a).
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It should be noted that while Compton scattering is occurring in the experiment
the ratiovg/ve is typically 3 and therefore filamentation may also be operative. Any
density reduction due to self-focusing will shift the Thomson spectrum from Compton
induced density fluctuations towards lower frequencies [Fig.(2.5)].

However the simultaneous broadening of the spectrum as the higher frequencies saturate
cannot be accounted for by invoking self-focusing and one is led to look for another

saturation mechanism.

2.3.3.2 Saturation Mechanism

Equation (2.3) suggests that one way to saturate the instability is to change the
electron distribution function f(v) and therefore the electron susceptibility ¥, such that
the growth rate Y(Aw, f(v)) no longer has a resonance at the original 23 A shift but
perhaps at a lower frequency shift. This could account for both the saturation of the
scattered light signal at the original frequency shift and the appearance of signal at new
frequency shifts at later times, as seen in Fig.(2.5). To test this idea we ran the
electromagnetic particle-in-cell computer code WAVE to simulate the experiment. A one
spatial-dimensional simulation with kApe = 0.6 was run. The backscattered frequency
spectrum was monitored as was the longitudinal electron distribution function . In this
simulation, the peak backscatter signal built up and saturated while at the same time, the
longitudinal distribution function became asymmetric, with a tail being pulled out on the
side moving along kg [Fig.(2.6)]. This is due to momentum deposition o electrons
with a velocity near vg from the reflecting pump photons. The detailed time-evolution
of the scattered light spectra looked very similar to the experimental data of [Fig.(2.5a)].

The signal started out narrowband at a frequency corresponding to that of the maximum
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growth rate for the unperturbed, Maxwellian plasma. As this frequency component
saturated, the peak moved to lower frequency shifts (shifting by a factor of about 0.85)
and the bandwidth became broader (Aw/® = 30 %). The power at the original frequency
fell after saturation, as it did in the experiment. This could be due to phase mixing of the
bunched electrons contributing to that particular mode, once that mode is no longer
driven. The reason that the mode is no longer driven can be seen from the theoretical
growth rate of Eq.(2.3). When the electron distribution function is perturbed, the poles
of the function move to new frequencies. In fact, when we numerically solve for y,
using the final electron distribution function from WAVE as an input and use the result
in Eq.(2.3), we find that the growth rate peak has indeed shifted towards lower
frequency and has become broader. Thus, it seems that Compton scattering is self-
limiting in low density plasmas because the momentum absorbed in the instability is
typically enough to perturb the distribution function and thereby turn the instability off at
any particular frequency (Albritton 1975). Although SRS could grow in the flattened
region of f(v), phase space turbulence associated with particle trapping can account for
the absence of SRS in both experiment and simulation. The SCS induced CO7
reflectivity was 104,

We should note that, with the very short 100 ps rise time for the laser pulse, the
electron-time-scale processes occur before SBS has a chance to grow, thus
experimentally decoupling the two instabilities . Typically, SBS comes up late in the

SCS pulse or even well after the SCS has shut off and is not thought to terminate SCS.
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Figure 2.6: Longitudinal distribution function resulting from a 1 D
WAVE simulation at different instances in time. The pre-formed density
was equal to n/ri¢ =0.01 and the initial thermal electron velocity was vy =
0.028¢. The laser driver strength was equal to vgge/c = 0.1.
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2.4 Conclusion

We have made the first detailed spectral measurements of stimulated Compton
scattering from a pre-formed plasma. For low density, the observed density fluctuation
spectra seem to be convectively saturated and have the predicted large spectral
bandwidth throughout the time of interaction. The scattered light peaks at a frequency
shift Aw corresponding to a phase velocity about equal to the electron thermal velocity.
For higher density, an initially narrow spectrum is seen to saturate and evolve into
broadband Compton scattering with frequency shifts once again near 4ve. Using the
code WAVE as a guide, we suggest that the saturation is due to a reflectivity-induced

modification of the electron distribution function.

As we have shown in this chapter, the characteristics and evolution of the SCS
instability are determined by the plasma properties. By measuring the complete
frequency spectrum of the density fluctuations associated with SCS, one can obtain a
local estimate of both the plasma density and temperature. In the next chapter we will
look into the plasma physics aspects of tunnel-ionized gases. Based on the insights
gained in the study of SCS in a pre-formed plasma, Thomson scattering of SCS driven
fluctuations will now be used as a diagnostic for, and provide information on the

properties of plasmas produced through tunnel-ionization.
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Chapter 3

Plasma Physics Aspects of Tunnel-Ionized
Gases

3.1 Introduction

In this Chapter we explore the plasma physics aspects of gases ionized via
tunneling ionization through experiments and supporting particle-in-cell computer
simulations. Most of the work on tunneling ionization of gases has been conducted in a
very low pressure gas, i.e. single particle regime. High density plasma production
using tanneling ionization has recently become of interest for X-ray recombination lasers
and plasma based accelerators as discussed in Chapter 1. In such plasmas space-charge
effects cannot be neglected thereby complicating a simple extrapolation of the single
particle results to predict the properties and behavior of macroscopic plasmas. Plasma
physics issues need to be considered in determining both the initial plasma
characteristics and the evolution of such a plasma.

As shown in Fig.(3.1) we divide the interaction of the laser with the gas target
into three different phases. In the first phase, the ionization phase, the laser intensity
has exceeded the 1onization threshold and the gas becomes ionized. We calculate the
time evolution of the plasma density and the electron distribution functions using the
Keldysh model of tunneling ionization. In this model the electron tunnels through the
suppressed Coulomb barrier of the nucleus and then interacts classically with the applied

electromagnetic fields. The key predictions from this model are that a plasma can be
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obtained with a fully ionized density (controlled by the fill pressure) and a polarization
dependent, anisotropic distribution function. The transverse distribution is much hotter
than the longitudinal distribution. Furthermore, when using linear polarization
harmonics of the laser frequency will be generated through the stepwise ionization

process.
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Figure 3.1: Hypothetical plot of the plasma density n normalized to the
neutral gas fill density ng (solid line) and the laser intensity 1 normalized to
the peak intensity Ipeax (dashed line) vs. time. The three different phases in
the interaction of a high intensity laser beam with a gas are denoted by the
point-dash lines,

In this ionization phase, the laser-plasma parametric instabilities such as SRS

and SCS are strongly affected by the rapidly varying plasma density and rapidly
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evolving anisotropic plasma temperature. Also the maximum density of the plasma can
be clamped due to beam refraction. Refraction occurs as a consequence of the highly
non-linear tunneling ionization rate which can lead to steep plasma density gradients in
the transverse or radial direction.

In the second phase, plasma physics issues resulting from the continued
interaction of the high intensity laser beam with the space-charge dominated plasma have
to be considered. When electrons are born into fields which have a longitudinal
component (such as in a focusing or refracting beam), they will have a longitudinal drift
velocity leading to a high T). Also, electrons born at the same longitudinal but different
radial position will end up with a different drift velocity magnitude due to the radial field
dependence and cause a smearing of the resulting distribution function. Furthermore the
electrons, retained by the space-charge, keep interacting with the radial and longitudinal
space dependent electromagnetic fields. Both effects give rise to an effective stochastic
heating.

If the plasma density changes on a slow enough time scale, the parametric
instabilities can start growing. For small kAp (high plasma density, low Ty) SRS will
grow while for large kAp SCS will grow. At the same time the anisotropic distribution
function will relax due to instabilities such as the Weibel instability, causing a continued
increase of Ty which in turn influences the evolution of SRS/SCS. On the longer time
scales SBS will grow and hydro-dynamic effects such as plasma expansion andfor
ponderomotive blow out will become important.

In the third phase, the laser intensity drops below the threshold for the
parametric instabilities but the isotropization due to the Weibel instability can continue.

Eventually the plasma will recombine,
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In this Chapter we describe some of the first experiments which explore the
physics issues unique to tunnel-ionized plasmas as discussed above. Understanding of
these plasmas has been aided by particle simulations in which the plasma is created via

the tunneling ionization process.

3.2 Theoretical Considerations
3.2.1 Tunneling Ionization Model

The characteristics of a plasma, produced through ionization of a gas by an
intense laser are calculated using the tunneling model (Keldysh 1965). First we
calculate the plasma density evolution during the ionization phase and next we calculate
the resulting electron distribution functions at the end of the ionization phase. In
tunneling fonization, the rate at which the plasma density increases is given by

dn(r)

— w(:)(an(z)) (3.1)

where n(z) is the time dependent plasma density, N is the initial neutral gas density and

w(1) is given by (Landau 1978)

am et (BN 5[5 V7
_dme' [ E _2{E -
wit) = e (E;.) Cexp[ 3(E,J C:} (3.2)

Here E and E; are the ionization potential of hydrogen and the atom in question,

{=E4/E(t) where E, = m,%¢’ / #'is the atomic unit of electric field, and E(z) is the
amplitude of the applied electric field. In the "plasma regime” we expect that a small
fraction of electrons will leave the focal volume and build-up a space charge potential. A

simple estimate, based on Gauss' law, shows that the space charge potential reaches a
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large enough value to confine the bulk of the remaining electrons when a charge

imbalance 8n exists larger than
(I)P

2ne’o?

on= (3.3)

Here ¢ 1s the radius of the plasma cylinder, defined as the position where the laser
intensity is at its threshold value for ionization and @y is the ponderomotive potential of
the laser field. For our experimental parameters dn needs to exceed 1012 cm™3 for space
charge to retain the electrons. The rate equation for the plasma density has been verified
experimentally and found to adequately model the time evolution of the plasma density

{Downer et al. 1990).

As an example, using a CO2-laser with a peak intensity of 3 x 10614 W/ecm? and

pulse rise time of 150 ps focused in hydrogen gas we find from Eq.(3.1) that the density

builds up rapidly in 20 ps once the ionization threshold of 6 x 1013 W/em? is exceeded.
For a given intensity, the ionization onset occurs later with circular than with linear
polarization since the field strength is V2 lower.

In the absence of plasma effects, the evolution of the electron energy distribution
can be calculated assuming classical interaction of the newly born electrons with the
ionizing electromagnetic fields (Landau 1962, Corkum et al. 1989). Assuming that the
electron is born at rest in a specific phase of the electric field, given by

E=Esinw,x+aEcosw,ty, one finds that its energy in the laser field is comprised

of the usual quiver energy,

1 1e*E*cos’ o 1
2 _ ,

Easc somv “5 e (3.4)
plus translational energy
vi+oav?
Ermm = m——“——é——-———”- (3-5)
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where vx, vy are the DC-drift velocity component in the x and y direction respectively,
and o is the degree of ellipticity of the incident polarization. Here e and m are the usual
electron charge and mass respectively, and wg is the laser frequency. This drift velocity
arises because the transverse canonical momentum of the electron in a plane wave is a
constant of the motion. This model has been shown to predict the correct values of laser
polarization dependent anisotropic drift energy distributions in an experiment in the
single atom regime by Corkum et al. (Corkum et al. 1989). 1-D calculations show that,

for previously considered laser parameters, an anisotropic quasi - Maxwellian with a
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Figure 3.2: Calculated (single particle regime) transverse electron drift
velocity distribution f(vy) produced by a linearly polarized laser with an
intensity of 1.2 x 1014 W/cm?, in argon gas. This quasi Maxwellian
distribution has a temperature T | of about 150 eV. The longitudinal drift
velocity distribution (not shown} is also quasi Maxwellian with Ty << 1 eV.
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Figure 3.3: (a) The calculated (single particle regime) 2D transverse
electron drift velocity distribution f(vy, vz) produced by a circularly
polarized laser with an intensity of 1.2 x 1014 W/cm?2, in argon gas. (b)
Slice through (a) at v, = 0, showing a major radius of 0.065 ¢ and a minor
radius of 0.006 c. (c) Associated longitudinal drift velocity distribution (10
times expanded velocity scale).
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transverse temperature T | = 150 eV and and a longitudinal temperature T)j << 1eV is

produced for linearly polarized light upon completion of ionization. This is shown in
Fig.(3.2).

For circularly polarized light, a ring distribution with a major radius (transverse
to the incident laser beam wave vector ko) of 2.3 keV and a minor radius of 1 keV with
Tij of only 4 eV is generated. This is shown in Figs.(3.3a,b,c).

To summarize, from the tunneling ionization model one expects that fully ionized

plasmas with controllable T and negligible T)| can be produced. Next we will

investigate the validity of these predictions through experiments and simulations.

3.2.2 Stimulated Raman Scattering in a Time Varying
Plasma

In the experiment coherent Thomson scattering of SRS and/or SCS driven high
frequency density fluctuations will be used to provide information on the evolution of
the plasma density and temperature. In a seminal paper by M. N. Rosenbluth the theory
of the three-wave parametric instabilities for weakly inhomogeneous media was derived
(Rosenbluth 1972). Following a similar analysis we consider the effect of time varying
plasma conditions on the growth of electron density ﬂuctuatic‘ms excited through
stimulated Raman or Compton scattering. The time dependence comes about through
lonization and/or plasma heating. First we will analyze Raman scattering in a cold
plasma with a time dependent density and/or pump strength. Next we will include the

effect of a time dependent temperature for the case of Compton scattering.
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Let Eq(wo.ko) be the pump wave, E1{w1,k;) the scattered electro-magnetic
wave and E(w,k) the electrostatic plasma wave. The plasma density n is assumed to be
spatially uniform but to vary as a function of time. In the case of tunneling ionization
the rate at which n changes, is given by Eq.(3.1) whereas for collisional ionization the

rate is given hy

dn 9 _n
—&—t-mkn[N n]ulnN[l N] (3.6).

The equation of continuity is modified for an ionizing plasma through the addition of a

source term S(t) :

an
—+V- =
EP +V:(nv) = S(1) (3.7).

Assuming that electrons are bom at rest S(t) is equal to the ionization rate. Denoting the
fluctuating density by fi we write the density as n=ng+fi where ng is the background
electron density. Since the rate of plasma production due to tunneling ionization only
depends on the available amount of neutrals N-n(t), there is no change in the equation of
continuity for the fluctuations. However, for collisional ionization the rate is
proportional to the amount of free electrons. If there is an electron density fluctuation
present in the plasma it would naively imply that at local density maxima a higher
ionization rate could enhance the desnity fluctuations. For a propagating fluctuation
however this local enhancement smears out and since the new born electrons do not

oscillate the wave is actually damped. The equation of continuity for fi is then

dfi+nV-¥=0 (3.8).
The equation of motion of the density fluctuations is modified by the ionization through

the addition of a damping term (Appendix B)

m H

a

3,v+——c—Ez~V(vu‘v;)+ﬂ,[1—-£]v (3.9).
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Taking the divergence of Eq.(3.9) and the time derivative of the equation of continuity

and using Poisson's equation
V-E= -4rnie (3.10),

we obtain

%% + va i + 0 (DA = n, V*(v, -v,") (3.11)

describing the driven density fluctuations in an ionizing plasma. Here v is the

phenomenological damping rate and

W*eEi (3.12),
m(oj

where Egis the applied electro-magnetic field at frequency g and Ejis the
backscattered electro-magnetic field at frequency w1, From Maxwell's equations we can
also derive the equation governing the behavior of the scattered E.M. wave :

(92 +c*V + 2 )E, = ~w!f'E, (3.13)
where we have assumed W/, << 1 which is valid for underdense plasmas.

We now write
il kx—f wat
0 = ne ( )

lg = Enei[kox—-]wedl}

E, - ﬁlei[klx—f w]dtjei

€

Q

(3.14)

and will assume that ﬁ, ﬁo, %1 are slowly varying amplitudes, i.e.
{Bfﬁ << dh

. . 3.15
I'E, << w JE, -

where j=0,1.

30



Applying the Fourier tranform in space and using Eq.(3.15) we can rewrite the coupled

equations (3.11), (3.13), in the slowly varying envelope approximation :

21,2
. -~ R IS € k E o oy & —]
(v—2iw)dh—iwvi=-———2n Ele ifawdt - _p Ele ifdwd
mo,w,
» ~ ~ .IA a (3.163,b)
(v +2iw, )0E +ioy vE] =~0 A Ee!' 49

Here vy is a phenomenological damping rate of the electromagnetic wave,
212
ek°E, . .

n,. Since the plasma is assumed to be
m w0,

Aw=0w,~w,~w and A=

homogeneous there is no wavevector mismatch, i.e. Ak =k, ~k, ~k =0. Eliminating

E* from Egs.(3.16a,b) we obtain the following equation for n*:

P aal, A iov iV, v—2ia
A*h+dnlidw - — e —— — |+
A v-2iw v+2w v-2dw

i (3.17)
: (Awwé)wv_k wow, -7  (dv+ov) _0
V- 2ie (v, +2iw (v=2iw) v-2iw
22,2
2 Dy # s k Eo 2. R
where I =A@E, = PR @, 1s the homogeneous growth rate for the time
o1 . ' _ )
independent case. Let Ap = Aw#-ié,—‘i’—zx‘»—l- -cg, Vo =2+ 0 and ¥y =i
A2 2 w 2 2 4w,
Assume v << w1, © then we can rewrite Eq. (3.17) as
A7+ dh [Bw+ v, )+i [iﬁg"’dé‘iu yf}xo (3.18).
Using
f=n’ ew—f(iAawveff)dt (3.19)

Eq. (3.18) can be reduced to

31



i 1f e U —VY
O +n' | —=A mu('Aw-l« : )w =0 20).
L n{ e b 2 Yo (3.20)

In general, the detuning A® can be a complicated function of time. Since the
electromagnetic waves satisfy the dispersion relation, the rate at which their frequency

. do; opdo
changes due to a change in the plasma frequency is given by ?ti =P EE where
W

j=0,1. For an underdense plasma we therefore find that

dA(D_d(DQ d(ﬂl d_0)~ _Cl@g
dt — dt T odt " dt T dt

(3.21),

and ® = wp. To obtain an analytic expression for the amplification of the density
fluctuations due to Raman scattering we now linearize the detuning Aw in time around
the point where Aw =0, i.e. Aw=-Bt. From Eq.(3.22) this then implies that the
density is assumed to increase quadratically with time around t = 0, We next assume
that the pump strength varies on a slower time scale than the density and that the

effective damping v1 - v is small. Normalizing time to t = t/ B1/2, Eq.(3.20) becomes

12 . 2
3in'+t--~n'-+~ LY=o
4 2

B (3.22).
. . 'Y20 .
An approximate solution for—B— >0 is then
[ 2 12 %L
n’ =n, sinh J_ (}wﬂ—L} dr
B4 (3.23),

where we have neglected “i” in Eq.(3.22) since we assume finite amplification larger

than 1. The integration is carried out to the turning points o = 2 To The net e-folding

VB’

is then
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. 2 12 yz z
K=J° Yo P V= nte (3.24)
<\ B 4

B
?.2
and hence n'= no'exp{fr%"—] . (3.25)
2
i ? yﬂ y
= wtoy 3.26
o fi=n, exp[ﬂ:B 4 ] (3.26)

The effect of the time dependent density is therefore equivalent to reducing the effective

Yo

Jo and allowing the growth to occur only during a time At =2 Nh

VB

growth rate to

3.2.3 Stimulated Compton Scattering in a Time Varying
Plasma

To model stimulated Compton scattering in a plasma with a time dependent
density due to tunneling ionization, we start from the Vlasov equation (Krall and

Trivelpiece 1973) to which we add a source term S(t) given by

of € Vv .v.') of
Vf — —_—0
élt+v f [mE+ - jav S(v,t) (3.27)
where
Sv,1) = w(n)(N = n)(v) (3.28)

The time evolution of the zeroth order distribution function is then determined by

o _ ——w(r)na(l - E—Ja(v) (3.29)
dt n

el

and the first order perturbation f satisfies the equation
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of e v.v. '\ of

—+ikvf—{—E+ik—*+——}—==0

ER ikvf (m i - )EN (3.30)
Letting

F_ 7 ikx—iJed

f=te (3.31)

= etb-iloa
and applying a spatial and temporal Fourier transform to Eq. (3.30) we obtain

af,
f:i(ﬁEﬂk Vo ¥y ] dv (3.32)
m m w—kv,

and, integrating with respect to v, we find the fluctuating density 7 to be given by

Jof
A= 15—9(15 +—‘-k.(v0.v;)) —2v_ 4
km 4 (D"”kvx (333)

We now define the plasma susceptibility e as

_Amel p of, ‘
K== oW (3.34).

The time dependence of both the density and temperature are contained in the expression

for ye through its dependence on f,. Fourier transforming Poisson’s equation

[Eq.(3.10)] we get

dme (335)s

I+, (3.36)
2
where A, = ————k——————— In the weakly damped limit Eq.(3.16b) can be rewritten as
Y drnmio,o,
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P T
d,E, +-5"3-E3 =inE, o,

(3.37).

Finally, combining Eqs.(3.36) and (3.37) and integrating with respect to time we obtain
P — ..Y..L —iR2 2 _x_e_

E = E exp ,[( > 1IEJA @, T+ 1, )dr (3.38).

The density fluctuations will therefore have an amplification factor given by

J‘ 22 xe __vl
exp IiA}a)pEo Im[wl+z ) 2 :|d[ (339)

€

The integration has to be carried out up to a time which is the shorter of the laser pulse
length and the time it takes for the light wave to convect from the location of the source
(usually right hand boundary of the plasma) to the location of the observer. The
convection velocity for the Compton waves can be neglected since these waves are
heavily damped.

If the plasma conditions and pump are time independent then Eq.(3.39) reduces

to the usual time independent Compton growth rate (Drake et al. 1974)

v, Y 20, kA,,)
=2 -2 1 £ < . 3.40
Ye (c) @ m1+z£(a},klbg) (3.40)

The associated spatial growth rate is then given by

2
K, =2(£J LR ACNZTY (3.41)
c) ¢ l+x(wki,)

3.2.4 ITonization Induced Refraction

Because the ionization rate [Eq.(3.2)] has a strong non-linear dependence on the
applied field, a plasma with strong radial density gradients is formed when a Gaussian

transverse intensity profile is used. This plasma can then act as a negative lens, refract
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the laser beam which clamps the intensity close to the ionization threshold suppressing
thereby further ionization.

A simple estimate for the scale lengths associated with refraction can be obtained
as follows. In an inhomogeneous medium one can calculate the path taken by a light ray

from the paraxial ray equation

0 An
T

df =

ds (3.42)

where An =1, — 7, with n_and 7_, the index of refraction of vacuum and the

yac

medium respectively. The index of refraction for electromagnetic waves in an

underdense plasma can be approximated as
D12, 1n@m

np“"‘“(l Wp /(D =1-5 = (3.43)
where n is the critical density and n(r) is the radial density profile.
Substituting Eq.(3.43) into Eq.(3.42) we obtain
1dn/n
46 = ————=ds 3.44
2 Ir ( )
The total bending angle after traveling a distance L is given by
_éj dn/ng) 1L zgn
b= 2 or ds T 2Lpwone (3.45)

where L is the path length normalized to zg and Lp is the density gradient scale length
" nonmmalized to wg.

We next derive a scaling law for intensity clamping due to refraction, by
incorporating the paraxial ray equation into Gaussian beam optics. Initially, as the laser
intensity increases above the ionization threshold, plasma will be produced in a small
volume. Subsequent light rays entering the plasma and converging towards the focus

will now be bent due to refraction. If the slope of the rays is zero, at the location were
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the laser intensity is just below threshold, then further ionization will be prevented and
the plasma density will cease to increase.

The intensity profile for a Gaussian beam is given by

2
2d
I(s,p) = Ipeak ——5— (3.46)
\'2
W) 2.2z _ T
where V(S)“wo“(l+s ) ,s—ZOandp—WO (3.47)
27[W02

with wq the beam size at the waist, 2 zp = the Rayleigh range, A the wavelength

of the laser and Ipeak the peak laser intensity. The rate at which the intensity changes as

a function of s is given by

p.2
31(s.p) ik 2 g
S,
5o = 2 Tpeak 5 [1- 21§ (3.48)
and
d
() =t (3.49)
Gauss 1 + 52
Geometrically, (%E) is just the beam convergence (for s<0) or expansion angle
” Gauss

(s>0) due to Gaussian focussing. Refraction is going to change the spot size by an

amount

dv ) 1 7o
G2) =—d0 =5 (™)
ds Refrac '@ 2 wo

2 5(n/ne)

d 3.50
” 8 (3.50)

Therefore the total rate of change of the spot size is proportional to

; (%1;’—) (3.51)

dv
= (50
ds Refrac

&

Total Gauss
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. . . dv . .
The intensity remains constant, or reduces, when (mds) = 0 which gives
Total

wo.2 sLp
nngds 22 (—) ——=— (3.52)
Z0 1+ s2

where ds is the path length in the plasma. Ionization will be suppressed if the rate of
beam size change is larger than zero at a location s = sthresh Where the intensity reaches

the ionization threshold. In the absence of refraction, sghresh is equal to [Eq.(3.47)]

Sthresh =Y o -1 (3.53)

I
where o = Tt%:l{g' The radial density gradient scale length is roughly set by the width

of the jonization threshold intensity contour. To find the maximum width of the

ionization threshold contour we rewrite Eq.(3.46) as

pmv'\f%ln (%) (3.54)

and take the derivative with respect 1o s:

J

o

m_g_‘;’ l;n(%)___...__l -0 (3.55)

QL

s

Equation (3.55) is satisfied when g“;i = {, which is true for s=0 i.e. the beam waist

location, or when % In (%) =1, which implies v = _eg . Therefore a second extrermnum

is only possible when v > 1. The radial scale length Lp is then given by Lp =\ } % In o

-

for o < e? and Lp= —Cq— for o > 2. Equation (3.52) then becomes

) _
n/ng ds > 2 %2) %i Ina  fora > e (3.56)
(84
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and

2 -
n/ne ds = 2 (‘:—2) %2—1 for o > e2 (3.57)

The path length ds after which refraction competes with the focusing of the beam
depends on the experimental setup: for a static gas fill ds depends only on the laser

intensity while for a gas jet both laser intensity and length of the gas target are important,

LN S SM SEMED Maes INuy JNmas SRSN MM ANAEN Senr DEac et IR RS RENAE NSRS BN AR i el intiele e Jnitet

y position

£-0F

X position

Figure 3.4: Plasma density contours for a CO2-laser (Ipeak = 1.2 x 1014
W/cm?2) produced plasma. The box goes from -3 zg to 3 zg in the horizontal
direction and from -3 wg to 3 wg in the vertical direction. The highest
density contour is 1 (normalized to the neutral gas density). The dashed
contours increase by 10% while the solid contours increase by 1%. The
total plasma length with n/ng = 1 is approximately zp.

To estimate the path length for a static fill, we used a simple 2D code to calculate the

density profile produced through ionization by a travelling laser pulse. Again, the

ionization rate is given by Eqs.(3.1) and (3.2). The spatial beam profile is prescribed by
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Gaussian optics and remains unchanged in the calculation. In Fig.(3.4) the density
contours are shown for the case of a CO2 - pulse (Ipeak = 1.2 x 1014 W/cm?) shot into
hydrogen gas. It is found that for the CO7 - case the plasma size is on the order of zg
while for the Nd-YAG case it is 16 zp | In order for the intensity to be below the
ionization threshold at the vacuum focus, the plasma needs to be dense enough along a

path length of roughly 1/4 the size of the plasma.
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Flgure 3.5: Plasma density contours for a YAG-laser (Ipeak 2 x 1017
W/cm?) produced plasma. The box goes from -24 zg to 0 in the horizontal
direction and from -24 wq to  in the vertical direction. The highest density
contour is 1 (normalized to the neutral gas density). The dashed contours
increase by 10% while the solid contours increase by 1%. The total plasma
length at n/ng =1 is approximately 16 zg.

Taking therefore ds to be on the order o

f % zp we finally obtain
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wie < 4 [Ine for o < €2 (3.58)

Zp 2a

and

for o > e2 (3.59)

n/ne £
neZn

as the maximum plasma density that can be generated due to ionization induced
refraction. It is obvious that reducing the length of gas through which the laser has to

propagate will increase the maximum obtainable density.

3.3 Experiment

In the experiment, a CO2-laser beam (up to 100 J, 150 ps rise time and 350 ps
fall time) was focused into a vacuum chamber containing up to 5 Torr of Ar or H2 gas.
The measured spot size in vacuum was 2 wg = 340 um and the peak laser intensity in
vacuum was around 3 x 1014 W/em?2. At this intensity, an estimate based on Eq.(3.3)
shows that, for fill pressures exceeding ! mTorr, the space charge potential is large
enough to confine most of the electrons against the ponderomotive potential of the laser.
The space-charge dominated plasma was produced over approximately two Rayleigh
lengths, 2 zg, and was diagnosed by (a) viewing the forward laser harmonic emission;
(b) collective Thomson scattering of a 0.5 pum beam to probe 2kq density fluctuations,
and (¢) by measuring the X-ray emission from the plasma. Using the tunneling
ionization rate equation [Eq.(3.1)] and neglecting any pump depletion, we found that in
Ar-gas full ionization (to Z=1) is attained for our experimental parameters in
approximately 25 ps once the threshold of 6 x 1013W/cm? is exceeded. As in the case

of single atoms (Yergeau et al. 1987, Corkum et al. 1989), no significant plasma
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formation was detected either visually or on any of the above diagnostics, below an
average laser intensity of 6 x 1013 W/cm2. Above this threshold both line and
continuum emission were observed but always in the recombination phase of the
plasma, almost 5 ns after the laser pulse was over. This supports the notion that

collisional excitation and ionization are relatively unimportant in our work.

3.3.1 Harmonic Generation

The evidence for plasma formation by tunneling comes from odd harmonic
emission from the plasma. When linear polarization is used the ionization proceeds in
stepwise fashion at twice the laser frequency generating a non-linear current J(lwg,/Kg) =
-e Vv ne, I = 3,5,7,.. which acts as a source term for odd harmonic emission (Brunel
1990). The frequency spectrum of the transmitted or forward scattered laser light was
measured through bandpass filters. The energy in the second harmonic was measured
using a spectrograph/pyro-array detector combination allowing a direct measurement of
the line width of the radiation. The energy in other harmonics was measured through
bandpass filters using a spectrograph and a liquid helium cooled Cu:Ge detector. The

spectrum was found to contain discrete lines at the second (AVA < 10-3), third (AMA <

10-3) and fifth harmonic of the laser frequency [Fig.(3.6)].
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Figure 3.6: Ratio of harmonic power to laser power for different
harmonic numbers. To convert the measured amount of energy into power
we have assumed the light to be emitted in a 50ps long pulse for all the
different harmonics.

In Fig.(3.7) the harmonic signal level as a function of the ellipticity o is plotted for the
second and the third harmonic. As expected from the tunneling mechanism, the third
and the fifth harmonic (not plotted) were found to decrease in magnitude as the ellipticity
of the beam o was increased. The second harmonic sigrnal however was found to be
independent of polarization

Since the infra-red pulses could not be time resolved we can only put an
upperbound on the pulse length Tpy1se needed to convert the measured amount of energy

into power. If the harmonics were generated by the tunneling mechanism they will only

be emitted during the time it takes to ionize the gas, i.e. Tpulse = 10 ps.
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Figure 3.7: Measured second and third harmonic signal level as a
function of the ellipticity o of the polarization of the ionizing laser beam.

The maximum theoretical efficiency P2r+1/P1 18 given by (Brunel 1990)

2
o, A
P S(woj ge}(p( 3€)k° w,, ¥ ) r r+1 ik
R r r*2r+1) ) exp(=3r C)Jrr—;—lexp B N 3.6

where 2r+1 is the order of the harmonic, wpg is the plasma frequency at full ionization.
The vaI-ue for € is calculated using the laser field strength at the moment where the
density is half its final value. For our experimental parameters the theoretical ratio P3/
Pj was a factor of 5 above the measured value but the difference may be due to the
uncertainty in the pulse length and in estimating the detuning factor D for a collimated

beam
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.2

_ sin (AkL/22) 3.61)
(Ak/2)

since the length L of the medium is not well known. Here Ak is the wavevector

mismatch between fundamental and third harmonic given by (Brunel 1990)
2

Ak=—rk, %g- (3.62)

In addition to stepwise ionization, odd harmonics can be generated through the
non-linear susceptibility %(3) of the media (Ward and New 1969) through which the
laser beam propagates and through relativistic effects inside the plasma (Sprangle et al.
1990). Harmonic emission due to the x(3) process will follow the laser pulse while
relativistic effects can only be important close to the peak of the pulse. The background
signal level, with the chamber evacuated, can indeed be accounted for by non-linear
processes in the NaCl windows and SFg-gas (Weber 1982) which is used to suppress
self-lasing. Although the beam traverses neutral gas inside the target chamber, it is well
known that no third harmonic will be generated for a strongly focussing beam when the
medium is infinitely long (Ward and New 1969). When the non-linear medium is finite

in length but still much longer than Rayleigh range and extends symmetrically on both

ends of best focus, the ratio P3/Pq is given by (Lehmeier et al. 1985)

2 (3342
Lo _olx L pp (3.63)
R 3Tnnce
Here %(3) is the non-linear third order susceptibility of the medium; nj and n3 are the
index of refraction of the medium at the fundamental and third harmonic respectively; &3
is the frequency of the third harmonic; b is the confocal parameter; zyp, is the offset of the

center of the non-linear medium with respect to the Gaussian beam waist position (z=0);

and 1j is the peak laser intensity. The detuning factor D for a Gaussian beam is given by
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L

1

D= J. exp(—~iAkz)dz (3.64)
/ N+i2G+2p

In Fig.(3.8) we show the factor D as a function of the length of the medium,

from which it is obvious that ¥(3) - effects are only becoming important when the
Rayleigh range is longer than the length of the non-linear medium (e.g. in a gas-jet

experiment).
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Figure 3.8: Detuning factor D for a Gaussian beam, using the parameters
b= 1.7 cm, Ak = 0.000115 for argon gas @ 500 mTorr and zp = 0.

The magnitude of x(3) was measured in argon gas at relatively low laser
intensity (I < 1011 W/ecm?) using a 1.06 pm YAG-laser, and atmospheric pressures
(Lehmeter et al. 1985). To first order, ¥(3) and the indices of refraction nj, n3 can be

extrapolated to other wavelengths and pressures using the relations given by Lehmeier et
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al.. Since the laser enters the experimex_lt as a collimated (i.e. Rayleigh range much
longer than L), low intensity (I<10!! W/cm2) beam before being focused, the
contribution to the third harmonic signal along this path is given by Eq.(3.63) where the
detuning factor D is given by Eq.(3.61). For our experimental parameters we then
obtain P3/P; = 1.04 x 10-19 and P3/P; = 1.53 x 10-13 as contributions of the high
intensity focusing beam and the collimated beam respectively. Here we have taken a
neutral argon gas density of 1.8 x 1016 atoms/cm3 and a fundamental power P of 100
GW. Even if we assume the harmonic emission to occur for the entire laser pulse, i.e.
Tpulse = 500 ps, it is clear from Fig.(3.6) that the measured third harmonic efficiency is

much higher than the theoretical contribution to harmonic generation due to x(3) in the

neutral gas.

Relativistic effects are also unimportant for the parameter regime of this
experiment. Using Sprangle et al.'s formalism (Sprangle et al. 1990) to calculate the

efficiency of third harmonic generation we obtain (Mori 1991)

B_(3 V(o) 2\?
gz(m} Dy | gl 48 (3.65)
P \256)\w ) “ 1" 2

Here ag 15 equal to voge/c. As shown in Fig.(3.9) the calculated efficiency is more than
6 orders of magnitude below the measured level, and therefore this can ajso not explain
our observations. Furthermore, the theoretical ratio of fifth and third harmonic power
scales roughly like third to fundamental which is in even larger discrepancy with the
measured efficiency for the fifth harmonic. Both of these effects are therefore relatively

unimportant in our experiment.
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Figure 3.9: Theoretical efficiency of third harmonic generation as
calculated from Eq.(10). The plasma density was assumed to be 10-3 n,.

The second harmonic emission, observed in the experiment was found to be
nearly independent of polarization, but cannot be explained by any of the above
mechanisms. Simulations show that the second harmonic emission originates from the
edges of the plasma, where the density gradients are the steepest, suggcstinzg that the

1 e

source for the even harmonics is the non-linear current J, = —en,v, = “Z“‘“’%VEZ
mao

(Meyer and Zhu 1987).

3.3.2 Time Resolved Thomson Scattering

Our main density and T)| diagnostic is based on the detection of electron density
fluctuations with kp = 2 ko excited by the laser beam through either stimulated Raman

(SRS) (Walsh et al. 1984) or Compton (SCS) (Leemans et al. 1991a) scattering. If the
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tunnel plasmas have very low values of Tj; as the single particle model suggests, then
kAD << 1 and SRS should have a very large growth rate, whereas for large Tji and kAD
on the order of I, SCS may occur. Here ApD is the usual plasma Debye length. The
scattered light from 2 kg density fluctuations was wavelength (0.2 A resolution) and
time resolved (10 ps resolution) with a spectrograph/streak camera combination.
However, it is not possible to follow the time evolution of the ionization process using
this technique since the ionization rate is comparable to the homogeneous, time
independent growth rate for the Raman/Compton instability (Drake et al. 1974). In

Section 3.2.3 it was found that the homogeneous growth rate for SRS v, is effectively
reduced to ¥, = -—% and that the growth time is limited by the smaller of the convection

time or the "detuning time" At = 2\}%. Here B is the rate with which the plasma

frequency varies as a function of time. For our experimental conditions the amplification
factor for the Raman instability equals two e-foldings of gain, which is below our
detection threshold.

Experiments show that the high frequency density fluctuations have a broad
frequency spectrum consistent with Compton rather than Raman scattering. The
evolution of one such spectrum from a plasma produced in a static fill of 1.1 Torr of
Argon is depicted in Fig.(3.10a). At early times [Fig.(3.10b)], the spectrum can be
fitted quite well applying the stimulated Compton scattering theory (Drake et al. 1974).
In this second phase of the interaction of the laser with the plasma we assume that the
density and temperature are evolving on a slow enough time scale justifying the use of
the time independent growth rate for the stimulated Compton scattering instability. The
fitting procedure is similar to the one described and used in Section 2.2.. Fitting the
theoretical spectrum [Eqs.(2.2)-(2.4)] to the first line-out from Fig.(3.10b) givesn = 6
x 1015 ¢cm~3 and Ty =75 eV [Fig.(3.11)]. This temperature is already much higher and
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the density much lower than that predicted by the single particle model. At later times
the spectrum develops structure and broadens to both higher and lower frequencies.
Applying the same fitting procedure at these times does not result in a good fit to the data

fFig.(3.1D].
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Figure 3.11: Plot of first three line-outs and fitted curves calculated by
using convective amplification of thermal fluctuations through the
stimulated Compton scattering instability {Eqs(2.2)-(2.4)].

About 140 ps after the onset of SCS, the spectrum resembles incoherent Thomson
scattering from a thermal plasma rather than from a collective mode. These are still

driven fluctuations (albeit in the strongly driven regime) as evidenced from the absence




of scattered light on the blue side. The most probable cause of the frequency broadening

of the spectrum is a continued increase of Tj| of the plasma. As will be seen later, this is
believed to be due to the Weibel instability. Even at higher fill pressures, the SCS
spectra indicated very low peak densities with n € 10-3 nc. At these low densities,
collisional processes should be relatively unimportant on the time scales of the laser
pulse. Also, at the higher pressures a significant amount of the laser energy was found
to be refracted out of the original cone angle of the laser beam, which will be discussed
in Section 3.3.4.

As an independent density diagnostic we have also attempted to excite a plasma
wave using a laser beam containing two different frequencies. This process is known as

beat wave excitation (Rosenbluth and Liu 1972, Tajima and Dawson 1979} and relies on
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Figure 3.12: Time-resolved frequency spectrum of 2 K electron density
fluctuations. Wavelength shift increases upwards and time increases to the
right. The feature near zero shift is from ion waves. The electron plasma
wave feature due to SCS ranges from 0-15 A. The feature at around 8 A is
the beat wave response of the plasma. The laser beam contained a 10.3 pm

and a 10.6 im line requiring a resonant density of 8 x 1013 cm-3.
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the fact that if the difference frequency of the two laser lines is close to the plasma
frequency a plasma wave will be resonantly excited. When the COz - laser was made to
oscillate simultaneously on a 10.6 um and a 10.3 um line, requiring a plasma density on
the order of 8 x 1015 ¢m3, a signature of the long wavelength plasma wave mode-
coupled to an SBS excited ion wave (Darrow et al. 1986) was seen on the Thomson
scattering diagnostic [Fig.(3.12)]. However, when using the line pair 10.6 pm-9.6 pm
which requires a plasma density of 1.2 x 1017 ¢cm3, this feature was never seen. This
confirms independently that the density is much lower than 1017 cm-3,

We also explored the possibility of laser-plasma instability control by varying the
polarization of the laser beam. The main effect of changing the laser polarization is to
drastically alter the initial transverse distribution of electron energies. If these
distributions isotropize rapidly then kAD, and therefore the damping rate for high
frequency electron fluctuations, can be varied. As we increased o the fluctuations due
to stimulated Brillouin scattering (SBS) were unaffected whereas the high frequency
fluctuations became weaker and were eventually completely suppressed for o 2 0.6
[Fig.(3.9)]. These observations are consistent with an increase in T)| in going from

linear to circularly polarized light. However, the inferred values for T are still

anomalously higher than the single-particle predictions.
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3.3.3 X-ray Emission

To obtain an independent estimate of the plasma temperature and to explore the
possibility of plasma temperature control through polarization of the ionizing laser light,
soft X-ray emission above 800 eV was measured using a silicon surface barrier detector
with Be and Mylar filters. Figure (3.14) shows three sets of data: linear polarization
with the detector looking (i) along and (ii) transverse to the electric field, and (iii)
circular polarization. A significant difference in X-ray flux was seen between linear and
circular polarization, as expected from the tunnel-ionization model. However, no
significant difference was seen between looking transverse and along the electric field

for the linear polarization.

o hor
1.0 & * Vel ® -
0 ® Circ °

Figure 3.14: The X-ray emission from argon plasmas (fill pressure of
280 mTorr), as a function of laser energy for different polarizations.



To model the X-ray data we have assumed that the X-rays are emitted by an
isotropized Maxwellian, for both linear and circular polarization. The spectral
distribution of the Bremsstrahlung intensity from a Maxwellian distribution is given by
(Shkarofsky et al. 1966)

ha

KT
S =nSoe G (3.66)

with

anz[ e’ Jj 16(27rm)%
nS, =05 0

m?c* \4me, ) 3\ 3KT (3.67)

and G is the Maxwell averaged Gaunt factor. The increase of X-ray flux with laser
energy can simply be attributed to the increase of plasma volume at higher laser
intensity. As seen from Eq.(3.67) the X-ray emission is proportional to the amount of
ions and electrons. Using a 2D numerical ionization code we calculated the amount of
electrons and ions produced through ionization for different laser intensities. The result

is shown in Figs.(3.15) and (3.16).
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Figure 3.15: Calculated volume factor as a function of laser intensity for
calculating X-ray yield from an argon plasma produced with a linearly

polarized beam.
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Figure 3.16: Calculated volume factor as a function of laser intensity for
calculating X-ray yield from an argon plasma produced with a circularly

polarized beam.



Taking this factor into account for the experimental data we found the X-ray signal to
become independent of laser energy as shown in Fig.(3.17). The spread in the data for
circular polarization is mainly due to the uncertainty in the peak laser intensity. Since the
exact pulse shape varies from shot to shot and a low intensity pedestal can be present, an
uncertainty in the peak laser intensity is introduced when converting the measured
energy to power. As seen in Fig.(3.11b) the slope of the volume factor curve for
circular polarization is very steep in the range of 1 to 2 x 1034 W/cm? thereby

magnifying the uncertainty in the X-ray yield.
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Figure 3.17: X-ray yield adjusted for the volume factor as a function of
laser energy for linear polarization (detector looking horizontally and
vertically) and circular polarization.

The Bremsstrahlung-spectrum from a Maxwellian plasma, with T as parameter,
is then multiplied by the filter transmission spectra and the detector sensitivity curve.

Integrating the resulting spectra gives the total amount of energy captured by the SSB-



detector. Experimentally we measured the X-ray flux through two different filter
combinations (25 m Be only and 25um Be plus 6.3 um Mylar foil), keeping the laser
energy and gas pressure constant. From the ratio of the x-ray yield for the two filters
we obtain a plasma temperature for circular polarization of around 450+150 eV.
Plasmas produced with a linearly polarized laser produced on average ten times less
signal {taking the volume factor into account) so that their temperature is typically about
180+50 eV. These temperatures are within a factor of two with what might be expected
from a laser beam which has it's intensity clamped close to the ionization threshold due

to refraction.

3.3.4 Tonization Induced Refraction

The clamping of the maximum density due to refraction was investigated by
measuring the amount of laser light outside the original cone angle of the beam, as a
function of fill pressure [Fig.(3.18)]). In Ar, as the fill pressure was raised beyond 200
mT, a sudden onset of refraction was seen. This corresponds to a density of around 0.7
x 1016 cm-3. In Hp refraction was found to be a more gradual function of pressure.
On the laser pulse time scale the Ar ions are relatively immobile and the radial density
gradients are "frozen-in", whereas in H* plasmas the ions can radially move during the
laser pulse and relax the density gradients and thus reduce the defocusing. This
conjecture was supported by the observation that the refraction effects could be reduced

by using circularly polarized light (presumably higher T | ) instead of linearly polarized

light [Fig.(3.19)].
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Figure 3.18: Ratio of the laser energy refracted outside of the original
cone angle of the beam to the incident laser energy, in Hz and in Ar
plasmas, as a function of neutral gas fill pressure. The energies are
measured by two cross calibrated calorimeters. The saturation of the
refracted energy at 30% of the incident laser energy is consistent with the
solid angle of detection of the calorimeter measuring the refracted beam
energy.

In the experiment the ratio o of laser intensity to threshold intensity was varied
from 2 to 10, 2 2o = 1.7 cm and 2 wg = 340 um. Using Eq.(3.56) we obtain n/n¢ ds =
3x 1074 8 x 10‘4) for oo = 2 (10). From the density scaling law [Eq.(3.58)] we find
that the maximum obtainable density for our experimental conditions is below 1.3 x 10-

3 n¢ which is in good agreement with the experimental observations.
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Figure 3.20 a,b: Contour plot of the transverse E; - field from a WAVE-
simulation. The simulation box is (200 ¢/wg x 125 ¢/we). The incident
laser field is launched from the left-hand boundary into vacuum. In (a) the
beam propagates in vacuum and is focused into the middle of the box. In
(b) the beam propagates through a plasma with peak density of 0.1 nc and is
strongly refracted. The plane of highest intensity has moved backwards.
Notice also that at x = 150 the E-field peaks of axis.
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Figure 3.21: Calculated plasma density contours at T = 900 wo-1 using
the PIC-code WAVE. The peak density equals n/ne = 0.1. The box is (200
c/Wo x 125 c/mg). Notice how the location of the plasma is not centered on

the box.
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Figure 3.22: CCD camera image of the visible radiation given off by the
plasma. The colors are artificial and denote different intensities.



As seen in Figs.(3.20)-(3.21), rays entering the simulation box at y = 72 c/®g (edge of
plasma) make an angle of about 0.22 rad; the radial density gradient scale length is
approximately 10 ¢/t and the peak density is 0.1 -r%:- From Eq.(3.45) we then find that
the ray propagates parallel to the axes after a distance L = 44 ¢/wgo which agrees
remarkably well with the simulation.

To verify the scaling law for the density clamping due to refraction we carried
out a simulation in which the laser intensity was chosen so that the density should stay
below 0.9 ng, where ng is the neutral gas density. The peak density was found to be

0.92 ny which is in good agreement with the prediction from Eq.(3.58).

3.4.2 Stochastic Heating

To understand the origin of the initial T} and its further increase with time,
simulations were carried out using WAVE. Simulations were designed to isolate the
roles of parametric instabilities, space charge effects and refraction, and the Weibel'
instability (Weibel 1959). In all cases a circularly polarized beam was launched from the
left hand boundary with a peak vgsc/c = 0.1, where vosc 1s the oscillatory velocity of
the electron in the laser field. The laser propagates in the x-direction. Time is
normalized to 0o~ ! and space to ¢/mg. When a new electron and ion are created they are
injected with an isotropic velocity of 10-5 c. For extremely low densities, n/ng = 10-8,
the electron distribution functions obtained were in excellent agreement with those

expected from the single particle model [Fig.(3.23 a,b)].
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Figure 3.23: Transverse (vy v;) and longitudinal (vy, vx) velocity space
without [(a) and (b)] and with “plasma” effects [(c) and (d}]. In (a) and (b)
the simulation was done on a 1D grid. The maximum density was n/ng =
10-8. The laser rise and fall time was 500 mo'l. The major (minor) radius
of the ring corresponds to a “temperature” of 1 keV (20 eV). In (¢) and (d)
the simulation was done on a 2D grid (200 c/wg x 125 ¢/td). The peak
density was 4 x 104 n.. The laser beam was collimated and had a Gaussian
transverse profile with a bearn diameter of 30 c/w,. The peak field strength
corresponded to 0.1 vpgc/c for both the 1D and 2D simulation. The
transverse (longitudinal) temperature at T=1200 g1 is = 500 eV (50 eV).



Simulations with a fully ionized density of 10-2 n¢ and a laser rise time of 750
wo~1 were done to isolate the high frequency instabilities (SRS/SCS). In 1D, SRS was
seen to grow to large levels (8n/n = 0.3) because of a very low initial Ty (kAp << 1),
and saturate due to particle trapping. The incident and backscattered @-spectrum is

shown in Fig.(3.24),
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Figure 3.24: (a) o spectrum of the incident electric field component E,
for a 1-D simulation. The plasma density at the end of the ionization was
102 n.. The incident field strength was equivalent to vgg/c = 0.2. (b} @-
spectrum of the backscattered electric field component Ey showing a narrow
feature shifted by wpg [Eq.(2.1)].



In 2D however, where the beam was focused into the middle of the simulation
box, SRS was suppressed because T)| at the end of the ionization was
already large. Instead SCS occurred at a reduced level, consistent with experimental

observations. This is shown in Fig.(3.25).
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Figure 3.25: (a) w spectrum of the incident electric field component Ey
for a 2-D simulation. The plasma density at the end of the ionization was
4x1072 n.. The incident field strength was equivalent to vose/c =0.2. (b) @
spectrum of the backscattered electric field component Ey showing a broad
spectral feature in contrast with the spectrum of Fig.(3.24).



A possible explanation for this high T)) at that time is that the electrons are born at
positions where electric fields, for small f-number focusing and/or strong refraction,
have a substantial longitudinal component. This in turn results in a significant
longitudinal drift velocity component (i.e. T|j) of the electrons. The variation of the field
strength will result in broadening of the drift velocity distribution since particles born at
different radial locations will end up with a different drift velocity. In addition, the
electrons, retained by the ion space charge, continue to interact with both the applied
electromagnetic fields and the space charge fields. Their phase averaged guiding center
energy can increase in a stochastic fashion (Forslund et al. 1985, Bardsley et al. 1989,

4
Mendonga 1985) leading to hotter plasmas with Tyl scaling roughly as mcz(—\iﬁﬁ) . Ina
C

2D simulation with n/ng =4 x 10“4, too low for the parametric instabilities or refraction

to occur, it was indeed found that at the end of the laser pulse, the plasma had a higher
than expected T)| ( 50 eV vs 2 ¢V in the 1D computations) [Fig.(3.23 ¢,d)]. When the
density was increased to n/ne = 0.1, strong refraction of the beam was observed with

the beam waist moving towards the laser leading to further stochastic heating.

3.4.3 Weibel Instability

To explain the further increase with time of Ty we considered the effect of the
isotropization of the transverse distributions through the Weibel instability. Although it
can be shown that the obtained distribution functions are stable to electrostatic
perturbations along the x-direction using the Penrose criterion (Krall and Trivelpiece

1973), they are unstable to electromagnetic perturbations.In the previous section we



found that the transverse distribution function in a space-charge dominated plasma is
much more filled in than the 1-D ring distribution obtained in the single particle regime.
We will therefore use the expression for the maximum theoretical growth rate for the

Weibel instability in a bi-maxwellian plasma, given by (Krall and Trivelpiece 1973)

g 2 kT, )1/2 T[1, ‘r/ 2
oy = — | @ b k| e ] 3.69
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The mode of the magnetic field with the maximum growth rate has a wavenumber kg

given by (Krall and Trivelpiece 1973)

an

w

kB = l@..ﬁ[ﬂ_lj (3.70)
3 ¢c\T

The electron cyclotron frequency wce corresponding to the saturation value of the

magnetic field for the mode with the maximum growth rate, is given by (Estabrook
1978)

2
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P
In Fig.(3.26) we show the theoretical Weibel instability growth rate [Eq.(3.69)]
as a function of T;. In calculating this growth rate we have used the assumption from
the tunneling model that the transverse drift velocities (vy, vz) and the longitudinal drift

velocity vy (and hence Ty and T ) are related through
v, +v,”

5 (3.72)

vy =

The isotropization of the electron distribution functions due to the Weibel
instability was isolated by running a 1D simulation with n/n¢ = 5 x 103 and a short laser
pulse (1000 wo~1) to suppress parametric instabilities. Both the measured growth rate
of the long scale length magnetic field characteristic of the Weibel instability and the

wavenumber of the mode were in reasonable agreement with the theoretical predictions



of Y= 2 x 103 wg and kg = 0.2 wy/c respectively. The k-spectrum of the By

component of the magnetic field is shown in Fig.(3.27).
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Figure 3.26: Theoretical Weibel instability growth rate as a function of
T for a tunneling ionization plasma.

However, temperature isotropization occurred over a slower time scale, T = (7/20¢ce),
where e 1s given by Eq.(3.71). Using the theoretical growth rate for our experimental
parameters we find that the Weibel instability will completely isotropize the electrons in
roughly 75 ps (180 ps) for circular (linear) polarization. This is consistent with the
observed broadening of the SCS spectrum {Fig.(3.6b)] discussed earlier {(Section
3.3.2). Although the simulations discussed here were carried out with a circularly

polarized beam, similar effects occur with a linearly polarized beam.
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Figure 3.27: ky - spectrum of the magnetic field in the y-direction at
T=1950. The laser rise and fall time was T=500 and had a strength vgsc/C =
0.2. The final density was 5 x 10-3 n.. The feature with mode number
around 100 corresponds to the wavenumber ko of the laser. The feature
with mode number around 20 , ie. kg = 0.2 ko, 18 due to the Weibel
instability.

3.5 Conclusion

The properties of tunnel-ionized plasmas have been studied through experiments
and particle simulations. Odd harmonic emission characteristic of stepwise tunnel
ionization, and density clamping due to ionization induced refraction were observed.
Qualitative evidence for plasma temperature control by varying the laser polarization was
obtained through measurements of the SCS instability spectra and X-ray emission.
Furthermore, longitudinal temperatures were higher than those expected from a single
particle model. Simulations indicated that stochastic heating and the Weibel instability

play an important role in plasma heating and isotropization. The maximum obtainable



density was found to be limited by ionization induced refraction. A simple scaling law
for the density clamping was derived by incorporating concepts from the paraxial ray
approximation and Gaussian optics, and confirmed by simulations.

In the next chapter we present a theoretical study of the non-linear dynamics of
beat excited plasma waves in a plasma with time varying conditions. As evidenced by
the mode-coupled beat wave signature in the Thomson scattering data, we were able to
excite such plasma waves in a tunnel ionization produced plasma. This possibility of
creating plasmas with a controlled time varying density has led us to investigate the
effect of both a time dependent density {and laser intensity } and the presence of short

wavelength density modulations on the dynamics of beat wave generated plasma waves.



Chapter 4

Non-Linear Dynamics of Relativistic
Plasma Waves

4.1 Introduction

In collinear optical mixing two laser beams with slightly different frequencies,
) and o, are injected into a plasma. If the difference frequency A® (= 01-07 ) 1
approximately equal to the plasma frequency, the ponderomotive force associated with
the laser light will resonantly excite a longitudinal plasma oscillation. Energy and

momentum conservation require
W3- = Wy (4.1)

kit ko =ky (4.2)
where the * stands for co- or counterpropagating laser beams. The phase velocity of the
plasma wave in the case of co-propagating beams equals the mean group velocity of the
light waves which for an underdense plasma is almost the speed of light in vacuum. The
feasibility of using these high phase velocity, large amplitude plasma waves for particle
acceleration, known as the plasma beat wave accelerator (Tajima & Dawson 1979), is

under investigation at UCLA (Clayton et al. 1985;1989), Rutherford Appleton



Laboratory (RAL), U.K., (Dangor et al. 1985), ILE, Japan (Kitagawa et al. 1988)and
Ecole Polytechnique, France, (Amiranoff et al. 1991).

In order to achieve considerable acceleration gradients (i.e. large electric fields)
inside the plasma one arranges the experiment so that the plasma density gives a plasma

frequency equal to the beat frequency, i.e. i}p_ =~ 1, and large laser intensities are
© _

required. The laser intensity is so large that one can no longer neglect relativistic effects
on the equation of motion for the plasma electrons, leading to the phenomenon of
relativistic detuning of the plasma frequency (Rosenbluth & Liu 1972).

In practice the actually obtained plasma density can ditfer significantly from the
resonant density and may be varying in time. Furthermore, in the process of building up
the large amplitude plasma wave, competing instabilities such as stimulated Raman
scattering (SRS) and stimulated Brillouin scattering (SBS) (Forslund et al. 1975, Rose
et al. 1987) will scatter laser energy out of the plasma and create low phase velocity
short wavelength electron plasma waves and ion waves. These waves represent in effect
a spatial and temnporal modulation of the plasma dielectric constant.

We will study the non-linear dynamics associated with generation of the plasma
beat wave in such a spatio-temporally modulated plasma through numerical modelling.
The goal is to determine the experimental conditions necessary to observe the different
non-linear phenomena.

In section 4.2 we begin with a treatment of the problems associated with varying
the plasma frequency in time and present the well known relativistic Lagrangean
oscillator model (Tang et al. 1985, Horton & Tajima 1985) with the addition of a rippled
component to the plasma density. The effective damping in the equation of motion of the
fluid momentum will contain a contribution of the ionization rate which gives rise to the

temporally varying plasma density.
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The obtained equations are then solved numerically in section 4.3 giving the
following results: the plasma wave exhibits hysteresis when, for a given damping rate,
wavelength and amplitude of the plasma ripple, and laser intensity (plasma density), the
plasma density (laser intensity) is varied in time. Furthermore, when the laser intensity
is varied in time, regions in parameter space are found where the motion of the fluid
element shows period doubling followed by chaotic motion (Feigenbaum 1978) or
where an incomplete period doubling tree (Bier & Bountis 1984) is observed.
However, reconstructing the waveform in the lab frame we find that wavebreaking
occurs before the second bifurcation. The physical origin of the first bifurcation is
analyzed by applying a perturbation technique to an equivalent generalized Mathieu's
equation,

In section 4.4 results are shown from the fully relativistic, electromagnetic,
particle~in-cell code WAVE (Morse & Nielson 1971) which has been used to verify the
validity of the analytic model. It includes all the effects competing with the build up of a

large amplitude plasma wave. We conclude with a summary of the obtained results.

4.2 Lagrangean Model of Relativistic Plasma Waves

4.2.1 Why a Lagrangean model?

The non-linear features of the plasma wave can be classified into two categories:
bistability, with the associated hysteresis effect, and the existance of subharmonics with
the possibility of a transition to chaos. Bistability and hysteresis have been discussed by
Ma and Xu (Ma & Xu 1989) within the slowly varying envelope approximation, They

studied the case where the time varying plasma frequency is very close to the resonance



frequency Aw, for ajaip much less than one where @ is the quiver velocity of the
electron in the laser field normalized to the speed of light, vose/c. The damping in their
model is dominated by collisional effects but they neglected any velocity dependence of
the collision frequency. Furthermore, the assumption that the fluid element displacement

is modeled by

E(T, wo) = E(T) sin [T - wo + D(T)] (4.3)
where € and @ are the slowly varying amplitude and phase respectively, precludes the
authors from observing subharrnonics in the motion of the fluid elements.

The possibility of chaotic behavior of the plasma wave for large driver strengths
has been discussed by Mendonga (Mendonga 1985). In this paper the analogy was used
between the equation of motion of the longitudinal electric field, derived under the
weakly relativistic approximation, and the Duffing equation (Duffing 1918). The weakly

relativistic approximation is valid when o is much less than 1 and the amplitude of the

plasma wave satisfies the condition I—lé <<1 where ny is amplitude of the density

modulation and ng is the background plasma density. The Duffing equation models the
motion of a non-relativistic particle in an anharmonic potential. It has been shown
(Holmes & Rand 1976, Huberman and Crutchfield 1979) that chaotic motion occurs for
displacements which bring the oscillator close to the turning points of the potential,

First of all, as pointed out by Mori (Mori 1987) and McKinstrie and Forslund
(McKinstrie & Forslund 1987), Mendonga erred in the sign of the frequency detuning of
the plasma frequency, in the equation of motion of the longitudinal electric field. When
deriving the equivalent potential from the restoring force terms in the equation of
motion, this leads to the wrong shape of the anharmonic potential. Secondly, even for
the correct shape of the potential we found that, analogous to Duffing oscillator, chaotic

motion occurs for displacements which bring the oscillator close to the turning points of



the potential. However, when treating the relativistic terms exactly one arrives at a shape
of the associated potential well which does not have any turning points. Indeed, in a
Lagrangean frame it is straightforward to show that the equation of motion in the
absence of damping for the momentum of relativistic plasma waves is given in it

simplest form by

dp . ., p__d

dt2+mp '\’1 +p2~thNL

where Fyy is the ponderomotive force. The restoring force can now be derived from a

(4.4)

potential

Vipy=~N1+p? -1 (4.5)

In Fig.(4.1) we show the exact potential as given by Eq.(4.5) and its Taylor expansion
up to 2nd order which is equivalent to the anharmonic potential in the Duffing model.
As can be seen from Fig.(4.1), the two potentials start differing significantly in shape
beyond Ipl = 1 and the use of the Taylor expansion for the potential is not justified for
the large momentum regime for the following reasons: while the exact potential has only
one stable equilibrium point and the radius of curvature of the potential never changes
sign, its Taylor expansion has one stable and two unstable equilibrium points and
clearly, the radius of curvature of this potential changes sign.

From non-linear dynamics it is well known that the existance of unstable
equilibrium points changes the behavior of any system in a fundamental way. In
particular for the Duffing oscillator it is found that a) it exhibits hysteresis and period
doubling only for driver strengths that bring the oscillator close to these unstable points;
b) when the amplitude exceeds momentarily the turning point limit, the oscillator is
unstable and undergoes a jump to the lower amplitude branch or continues to roll down

the potential towards infinity. From this we conclude that the rich non-linear behavior



(1.e. period doubling route to chaos and bistability) exhibited by the model-equation of
the longitudinal electric field as obtained under the weakly relativistic approximation, is
an artefact of this approximation. The details of the analysis are given in Appendix D.
However, it is well understood that the Duffing oscillator undergoes period
doubling and shows hysteresis when the particle moves in an asymetric potential well,
In practice such a situation can arise without the excursion of the fluid element becoming
unreasonably large when the wave is excited in a plasma whose density is rippled. The
background plasma can be rippled, for example, due to the presence of a slow phase
velocity electron plasma wave due to stimulated Raman scattering or an ion wave due to

stimulated Brillouin scattering.
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Figure 4.1: Plot of potential V(p) = V 1+p2- 1 and its Taylor expansion %— - Pg—

4.2.2 Fluid Equations for Ionizing Plasma

Since in the beat excitation of relativistic plasma waves the amplitude of the

longitudinal electric field is critically dependent on the ratio -;BR it is necessary to study
®

g



the effect of detuning (A® # wp) caused by a time dependent plasma density. The main
phenomenon leading to a time dependence of the bulk plasma density in the focal
volume of the laser beam on a time scale relevant for the beat excitation is avalanche
ionization (increase in plasma density) initiated, for example, by laser-induced
(multiphoton) ionization (MPI) (Shen 1984, Dangor et al. 1987, Leemans et al. 1991c).
Ponderomotive and/or thermal self-focussing (Max 1976, Kaw et al. 1973, Estabrook et
al. 1985, Tripathi & Pitale 1977, Cohen & Max 1979) which decreases the plasma
density, occurs on a time scale set by the ions and will not be included in our analytic
model.

Two possible ways of dealing with this ionizing plasma are as follows: the first
way is to treat each newly added amount of electrons and ions as a new species in the
plasma. It starts out at rest and will move under the influence of the electromagnetic
fields present inside the plasma. Thus it is necessary to solve a system of N-coupled
second order non-linear differential equations, where N is the number of groups of
plasma "species” one wishes to follow, which implies that a rigorous analytic treatment
of this problem can not be done. The second way involves making the following
approximation: we model the plasma using a one particle distribution function (Krall &
Trivelpie.ce 1973). The momentum associated with an infinitely small fluid element is
obtained by adding up the momentum vectors of each individual particle. So, when new
particles which are initially at rest are added to a particular fluid element, its total density
increases while its momentum is reduced.

The functional form describing the rate at which new plasma is being produced
depends on the involved ionization proces. Consider therefore a beat wave excitation
experiment using a COy laser. As shown in Chapter 3 it is reasonable to assume that
tunneling ionization is the dominant process in the plasma formation. Since the newly

born electrons start out at rest the source of plasma can be modeled as:

20



S(r,p.,t) = A n(r,0) 8(p) (4.6)

where A is an effective ionization rate, r and p are respectively the position and
momentum of the fluid element, t is the time and n(r,t) is the plasma density. Taking
moments of the Vlasov equation with this source term gives us the fluid equations, The
details of this calculation can be found in Appendix C. The resulting equation of

continuity is given by

on(r,y 8
8

- [ n(r,0) —Y} =% n(r,) 4.7)

while the equation of motion of the fluid element is found to be

%[P(r,t)]+ apa(”) {E+~E--] +AP(r) =0 (4.8)

It is noticed that the global effects of injecting new plasma into an oscillating
plasma are as follows: (a) the time-varying plasma density results in a time varying
plasma frequency and (b) the ionization rate shows up as an effective damping for the
single-fluid momentum. Using the analogy of a mass - spring system these effects can
be easily understood: since the newly added mass is initially at rest, it slows down the
oscillating mass and at the same time it changes the spring constant, i.e. the oscillation
frequency. The obtained fluid Egs. (4.7) and (4.8) complemented by Maxwell's
equations are used to derive the equation of motion of the longitudinal fluid element
displacement, driven by the ponderomotive force due to the beating of two transverse

linearly polarized electromagnetic waves, in a plasma with a rippled density.



4.2.3 Equation of Motion

The equation of motion for a Lagrangean oscillator moving in a one-dimensional
cold plasma in the electrostatic limit is given by (Dawson 1959, Richardson & Schram

1968)
ope
= e E4+FNL- A 4.9
P € NL- A Pe (4.9)

where we assumed that ions are immobile. Fyy, is the ponderomotive force given by

FNLm%chA@OgO‘Z sin (AK X - A® T) (4.10)

with 7Y the Lorentz factor, m, the electron rest mass, ¢ the speed of light and o, the
quiver velocity of the electrons in the laser fields normalized to the speed of light.

So long as the Lagrangean fluid elements do not cross, the one-dimensional Gauss law
can be integrated immediately to give the electric field, 1. e.

E=47teji Nj(x=xq+&")dl’ (4.11)
0

In the usual case Nj is uniform (= Ng), s0 one has E= 4 1 N &, whose simplicity
accounts for the popularity of the model. Koch and Albritton (Koch & Albritton 1974)
used the model in a ramp plasma (No(x) = No (1 + x/L) = No(1 + xg/1 + x/L)), 10
investigate wave breaking in plasma waves driven by so-called optical resonance, Here

we are interested in a rippled plasma (Darrow et al. 1987)
nj = Ng (1 + € sin k; x) (4.12)

or, substituting for x = x5 + &



n; = Ng [1 + € sin kj (xg + &)] (4.13)

where € is the ripple size. This type of density ripple is particularly interesting since
such a ripple is easily excited under beat wave experimental conditions due to the

cogeneration of low-frequency (e << (dp) SBS-driven ion acoustic waves.

From Eq.(4.11) we then obtain for the electric field

E=4me Ny Jé (1 + € sin kj(xg + &) d&’ (4.14)
or

ExzmeNO[§+kii(coskixo-cosk;<xo+§) 4.15)
Using

) .

% = mo Y Ve (4.16)
and

L 4.17)

a7

Equation (4.9) becomes

9 3
aé ;; ai v {ﬁ + cos(klxo coski(xg + E))] =
Ao —%0‘120‘2 Sin(Ak (xo + £) - A® T) (4.18)

where



o2 2
-1/2
y=1-C ALY (4.19)

C

2
LV . . ..
with (?"L) = (102 , which depends on the laser intensities.

From the dispersion relation for electromagnetic waves in a plasma we also have

2
cAk =c(ky-ko)=Aw (1 +—2" (4.20)
2m10

and since typically ®1.0x » p this reduces to ¢ Ak = Aw,
We now have to distinguish between sweeping the plasma frequency through ionization
and/or plasma blowout, and sweeping the driver frequency through, for example,
chirping the laser beam. For the former we normalize time with respect to Aw™L, space
with respect to Ak-! and obtain

d2u A du  wp? Ak ki

— 4 = — 4 t+ €[ coswg - Cos{wg +—-wl} =

T2 Y2or 3 { ki ¢ °7 Ak )

2
A o0
4 2
i

© 2
withu=AkF,,w0=kix0,fcmmzandym[1~(f—~) 010 ]
@

sin] (wg +1u) -~ Tj 4.21)
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For the latter we normalize time with respect to mp“f, space with respect to ¢/wp and

obtain
9% Lo 1 £ _
”é"‘”n“‘“"i*';ﬁéﬁ+%{C+;{cosKwo~cosK(wo+C)}}._m
m%% Sin{A—m (wo + L) - éﬂ—om (4.22)
Wp v Wp ®p
WithQmﬁl—c-,wc,:xoli,n=wp'c,r=m&m’1(=§,,1§i
®p Wp Wp

. 2 12
andy=[1-() -aj02]

_________ g



The obtained equation of motion given by Eqgs. (4.21) and (4.22) have been
solved numerically and the results are presented in the next section. Since the obtained

results for sweeping @y, or sweeping Aw are very similar we will only discuss the case

of the time varying plasma frequency in this chapter.

4.3 Numerical Results

In order to capture the full non-linear richness of the behavior of the plasma
waves it 1s necessary to resort to a numerical integration of the relativistic equation of
motion for the Lagrangean fluid element as given by Eqgs. (4.21) and (4.22). Due to the
high dimensionality of this parameter space we have limited ourselves to a subspace of
experimentally accessible values. In principal the damping rate has contributions due to
collisions, Landau damping (Chen 1984), ionization of the plasma, and mode coupling
(Darrow et al. 1986) to slow phase velocity plasma waves. As pointed out by Matte and
Martin (Matte & Martin 1988) collisional damping is negligible for the case of relatively
large driver strengths (vpgc/c larger than .1) and plasma wave amplitudes. Landan
damping is only important when the ratio of phase veiocit;r of the waves to thermal
velocity of the plasma electrons, gﬁ;, is less than 4. Therefore as a direct damping
mechanism for the high phase velocity waves it can be neglected. However, mode
coupling establishes very efficient transfer (Kruer 1972, Kruer & Dawson 1970)
between fast and slow electron plasma waves which can couple their energy to the
plasma through Landau damping. Typically it is found that its contribution to the
damping rate is on the order of a few percent. The contribution of the ionization process

to the damping depends on the ionization rate which in this paper is assumed to be on



the order of 0.01 oy, Therefore the total damping rate is varied within the range 0.01 @y
- 0.1 wp,

The range of wave number ratios is determined as follows: one mechanism for
generating the density modulation is the generation of ion waves through stimulated
Brillouin scattering. This produces ion waves with wave number k; = 2 ko, where kg is
the wave number of the laser frequency. If we take the experimental conditions of the
UCLA experiment (Clayton et al. 1985;1989), the ratio ki/Ak is typically on the order of
30. However this ratio can be as low as 2 if one considers the ion wave to be generated
through the ion-acoustic decay instability.

We will consider for most cases that the driver strength is limited to vogc/c = 1,
while the detuning ratio wp/Aw is varied in the range 0.5 through 2. We have chosen to

vary these two parameters as a function of time keeping the others constant.

4.3.1 Plasma Frequency or Laser Frequency Varying
with Time.

For the case of an unrippled plasma density we have observed hysteresis loops

g)p—zl.and —Qp—z
Aw

in plotting the fluid element displacement vs. detuning ratio when A
@

0.5 for a range of driver strengths and damping coefficients. An example is shown in

Fig.(4.2) for VOCSC— 0.2 T'= 0.01. The first, around i)p— = 1., is the usual beat wave
®

excitation which has at exact resonance a secular growth while the second, around fﬁ =
®

0.5, is a parametric amplifier (Rosenbluth & Liu 1972) with an exponential growth rate.



In the absence of the ion ripple period doubling was only observed for fﬂ = (0.5
W

. Vosc -
and when the driver strength was extremely large so that m%ﬁg is on the order of a few

times 1. At those driver strengths the Lagrangean fluid elernent makes excursions on the
order of the plasma wave length and hence approaches the unstable points associated
with the sinusoidaly varying ponderomotive potential. Of course one can no longer
neglect either the coupling between transverse and longitudinal momentum for those
ponderomotive forces or the, even more important, wave breaking effect which will be

discussed in section 4.3.3.
In the presence of an ion ripple, however, we have observed period doubling for

YO varying between 0.1 and 1. Depending on the ripple size € an incomplete

c
Feigenbaum tree is observed (0.12 < € < 0.50) or a complete period doubling cascade

followed by windows of altemating chaotic and regular motion (€ = 0.75). Although the

experimental realization of such large ripples is doubtful, the fact that this system can

1.57
we | Ey e
] = . i h ™
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Figure 4.2: Detuning curve for a relativistic Lagrangean fluid element
0.2 and I" = 0.01 in the absence of a density ripple. The

Vv
for ~%%¢ =
¢

arrows show the existence of hysteresis loops



show this rich behavior for certain parameters allows one to classify the obtained
equations among the general class of equations exhibiting the Feigenbaum characteristics
and hence apply the same universality principles ruling all such systems. This will be

discussed more in detail in the next section.

4.3.2 Laser Intensity Varying in Time

To demonstrate the effect of a time varying driver strength on the motion of the
Lagrangean oscillator, we show in Fig.{4.3) the amplitude of the fluid element
excursion as a function of time for a laser intensity which has a Gaussian time
dependence, i.e

(L)
LI=lpe At (4.23)

where I is the peak laser intensity, tg is the time at which the laser intensity peaks and
At is the paser pulse width. The oscillator is again moving in a rippled background and
has a resonant frequency which differs considerably from the driver frequency. The
numerical values used in this calculation are: damping rate I'=0.03, wave number ratio
ki/Ak = 30., ripple size £ = (.75 and detuning ratio wp/Aw = 1.9

For very early times, not shown in the figures, the system behaves linearly: the
homogeneous solution, oscillating at the natural frequency, is soon dominated by the
driven solution. The amplitude grows approximately linearly. As shown in Fig.(4.3),
as time goes on, the system develops higher harmonics indicating that it has entered the
non-linear regime. The phase space plot shows an outward spiralling curve, because the
driver strength is continuously increasing, and is egg shaped due to the harmonic

content of the motion.
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Figure 4.3a,b,c: Time series, phase space plot and spectrum of the

displacement of a relativistic Lagrangean fluid element, moving in a
rippled plasma. The driver strength has a Gaussian time dependence

with (io&) eak = 0.55. The damping rate equals I' = 0.03 Aw, ripple
c P q

size € = (.75, wave number ratio X = 30, and detuning ratio D
Ak Aw

1.9, The laser pulse has a full width at half maximum of 500 wp! and
reaches its peak at T= 1200 (Dp'l in simulation units. In figare (a) - (f)
the fluid element develops subharmonics up to eighth subharmonic and
becomes chaotic; in figure (g) - (i) it goes from chaotic into periodic
showing fifth followed by tenth subharmonic.
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Figure 4.3d,e,f: Time series, phase space plot and spectrum of the displacement of a
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Then, suddenly, at approximately t = 340 (:)p'l, the motion undergoes a first
bifurcation: the frequency spectrum shows half harmonics while in.phasc space the limit
cycle has split into two loops [Fig.(4.3a)]. As the intensity increases further one notices
a few more bifurcations (up to the 1/16 th subharmonic) [Fig.(4.3b)-(4.3e)] followed by
the onset of chaotic motion [Fig.(4.3f)-(4.3g)]. As the intensity reduces the system
returns to a periodic motion with period five [Fig.(4.3h)], undergoes a bifurcation to
produce period 10 subharmonic [Fig.(4.31)], becomes chaotic again for a narrow range
of driver strengths and undergoes eventually an inverse period doubling cascade to
return to a regular periodic motion with decreasing amplitude.

To ascertain that the observed behavior can be classified as a period doubling
route to chaos, we have constructed a Poincaré map (Moon 1987) by stroboscopically
sampling the motion of the oscillator at a rate equal to the driver frequency. In Fig.(4.4)
we show a bifurcation tree of the amplitude of the fluid element displacement as a

function of the driver strength, for the same parameter values as in Fig.(4.3).
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Figure 4.4: Bifurcation tree for the relativistic Lagrangean fluid element. The
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driver strength increases linearly with ( o

Jpeak = 0.7. The damping

rate equals I" = 0.03 Aw, ripple size € =0.75, wave number ratio f'i =

30, and detuning ratio D _ 1.
Aw

The first bifurcation is discontinuous followed by a series of continuous pitchfork
bifurcations. The phase-plane Poincaré map for a driver strength value in the chaotic
regime is shown in Fig.(4.5). Despite a low damping rate the map shows fractal-like

structure of a strange attractor (Moon 1987).
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In order to assess whether the Lagrangean fluid element undergoes the classical
period doubling route to chaos, we compared the values of the following three important
quantities with their theoretical values as obtained by Feigenbaum: a) the ratio §; of the
control parameter values of F,

S i
8 =F (4.24)
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Figure 4.5: Poincaré Map associated with chaotic motion of the
Lagrangean fluid element. The damping rate equals to I’ = 0.03 Aw,

Wy

ripple size € = (.75, wave number ratio ki, = 30, and detuning ratio
Ak A

= 1.9. The driver strength was fixed at X%ﬁ = 0.6.

s



at which the bifurcations occur, b) the pitchfork rescaling parameter o, and ¢) the rate 4
at which successive subharmonics in the power spectrum fall off. The theoretical values
of those three parameters are: 8., = 4.66920..., o = 2.503... and p = 4.58... . Taking
in consideration that the damping rate of the fluid element is low, we have found 3 to
converge fairly well to the limit ratio: &1 = 1.7, 67 = 3.8, 83 = 4.7. The rescaling
parameter o = 2.6, as obtained from the second bifurcation in Fig.(4.5), is very close to
the theoretical value, but the lower branch does not follow the same rescaling law. From
the power spectrum it is seen that the subharmonics drop by a value [ close to the
theoretical value only when one takes an average over a frequency range extending to @
=4 Aw. We therefore conclude that a deeper investigation is needed into the
mathematical origins of the bifurcations to ascertain that the classical period doubling
route is followed by this system on its way to chaos.

For smaller ripple sizes (€ < 0.5) we have observed incomplete period-doubling
cascades. Fig.(4.6) shows an incomplete bifurcation tree and the existence of hysteresis
for a case where the ripple size € = 0.15, wave number ratio ki/Ak = 30., and detuning
parameter Wp/Aw = 1.7. In Fig.(4.7) a parameter space plot is shown for the driver
strength as a function of plasma frequency detuning ratio. We have limited the driver

: Vosc : . . Wp
strength to a value corresponding to ‘é = 1. and varied the detuning ratio A from 0.3
W

to 2.2. As the third parameter we have used the ripple amplitude. We notice two
distinctly different regions for the detuning ratio: one cluster of data points is situated

around p 1.8 and one is situated around “p = (.5.
AW AW

g5



from observing this phenomenon in a laboratory experiment. Since the displacement of
the fluid element will contain spatial frequencies at Ak;, wavebreaking will occur when
Ak;j € >1. To verify whether the period doubling route can be completely modelled with
the Lagrangean oscillator model we followed the motion of many oscillators (up to 1000
per ion wave length) starting out with different equilibrium positions. It was found that
wavebreaking occurs before the second bifurcation takes place. This clearly limits the
validity of our model for describing the period doubling route in this beatwave system.
To assess whether even this first bifurcation could survive in a "real" plasma we
resorted to particle-in-cell simulations, which are the subject of section 4.4. The origin

of this first bifurcation is analyzed in the next section.

4.3.4 Origin of the First Bifurcation

The analysis is based on a theoretical study by Szemplinska-Stupnicka and
Bajkowski (Szemplinska-Stupnicka & Bajkowski 1986) on the 1/2 subharmonic
resonance and its transition to chaotic motion in a non-linear oscillator. The analysis
proceeds as follows: first we reduce the driven relativistic Lagrangean oscillator equation
to an equivalent driven Mathieu/Duffing equation. After solving for a steady state
solution, oscillating at the driver frequency, the stability against half-harmonic
perturbations is analyzed. For the case of zero ripple amplitude an analytical solution is

o Aw : .
found for the region in parameter space ( —, F) which the steady state solution is

unstable against perturbations at half the driver frequency. The boundary of this region
is in excellent agreement with the Arnold-like tongue, obtained by solving the exact

Lagrangean equation using a Runge-Kutta routine.



4.3.4.1 Steady State Solution of the Lagrangean
Oscillator

We start from the driven relativistic Lagrangean oscillator equation {Eq.(4.21)}
which models the behavior of a Langrangean fluid element moving in a plasma with a

density ripple under the influence of the ponderomotive force:

ﬁ2

o F
ii+—1+={u+dsin Ku|=—~-=cos(u—1) 4.2
" ,}/3[ ] " (4.25)

We now assume that the Jongitudinal velocity u is small compared to the quiver velocity

Vosc SO that the Lorentz factor ¥ can be approximated as

v 2 ~1/2
yz[l_(%n -T (4.26)

Expanding the cosine function in Eq.{4.25) and using Eq.{(4.26) we then obtain

i+ o, (0 + (o, (t)+ o (t)sin T)u + @, (1)8.sinKu = —a, (t)cos T (4.27)
where
o
o ()= Fz_
2
< az(t)"-“% (4.28)
o)==

We now write v = K u so that Eq.(4.28) becomes

V+av+(a, + a,sint)v+ o,K8sinv=~Ke,cos T (4.29)
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and will look for a steady state solution of Eq.(4.29) of the form
v v (t)=C,+C cos(T+ &) 4.30)
Substituting Eq.(4.30) into Eq.(4.29), using the identities

cos(a cosT) = 22 (-l)nJZn(a)cosan] - J (a) (4.31)

n=o

sin(a cosT) =2 3 (-1)"],,., (@) cos[(2n +1)7] (4.32)

n=

and grouping terms oscillating at the same frequency and phase we find

D.C-term: - ,C, wé%cz sin 8 + @, sinC,.J (C,} =0 (4.33)

cos(t+@)-term: —C, + &,C, — ,C, sin @+ 20,6 cos C J,(C, ) =—Ka,cos 8 (4.34)

sin(t+0)-term: - ¢,C, + ,C,_ cosf = ~Ka;sin 8 (4.35)

From Eqgs.(4.33)-(4.35) one can then find C,, C; and 6 to calculate the steady state
solution vo. We now perturb v, i.e. v = v + 0v, and substitute this into Eq.(4.29):
SV+V, + 0, (v, +8V)+ (0 + aysint)(v, + S v)+
a,8sin(v,+8v)=-Ka,cosT  (4.36)

Assuming that the amplitude of the perturbation v is small such that cos 6 v = land

sin 8 v = § v, and realizing that vq s a solution of Eq.(4.29) we find
§V+a,6v+{a,+aysinT+a,b.cos v J6v=0 (4.37)
But v, =C, +C, cos(v t+8) and hence Eq.(13) becomes

8V +a,6V+(a, + aysin T+ 0,8 cos[C, +C cos(t+0)]}5 v =0 (4.38)
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Using the identities from Eqs.(4.31) and (4.38) we can write the cosine-function as

cos[C, + C, cos(7 + 8)] = cosC,.cos[C, cos(7 + 8)] - sinC, sin[C, cos( 7 + 6)]

= cosCo{Zi(“l)nIzn(Cl Jeos|2n(z+6)] - J"(a)} a

n=g

n=o

sinC, {Zi(—l)“ 1,..(C )cos[(?.n +1)(7+ 9)]}(4_39)

and substituting Eq.(4.39) into Eq.(4.38) results in

6‘\?+0516\?+{a2[1+ SJD(CI)]+ o, sin T -

20,8 $inC, Y (~1)"pun (C, ). cos[(2n + 1)(z + 8)] +

n=go

o6 cosCO[Zi(—l)”JZR(C} Jcos[2n(7+ 9)]:”5 v=0 (4.40)

nel

Rewriting sint as sinT=sin(7+6)cos@—cos(r+ 0)sin@ and grouping terms,

Eq.(4.40) becomes

Sv+adv+ {51 + oty cos Bsin(7 + 8) — (@, sin 6+ 20,8 sinC,.1,(C, ) Jcos( 7 + 8)

+28 azian(——l)“ cos{n(7+ 9)]}5 v=0 (4.41)

n=2

where 8, = a2[1+5 JD(CI)] and ap is equal to -sin Cy (cos Cp) for n odd (even).

Eq.(4.41) is now in the form of Mathieu's equation which has been studied extensively.
To study the stability of the Lagrangean oscillator equation [Eq.(4.25)] we now

concentrate on the behaviour of the perturbation év with time. According to the results
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of studies by Hayashi (Hayashi 1964) and Szemplinska-Stupnicka and Bajkowski of the

Mathieu equation, the lowest order unstable region occurs at a frequency close to
1
A0, = — (4.42)
2
and we therefore assume as approximate solution for the perturbation

ET 1
ov(t)=¢e b%cos(51+ ¢) (4.43)

where € > 0 for an unstable region and ¢ is the phase with respect to the driver

frequency. At the stability limit € = 0 and hence

_ 1
ov(1)= b% cos(—z— T+ (p) (4.44)

Substituting Eq.(4.44) into Eq.(4.41) and grouping terms in cosine and sine we find the

set of equations

GceosBcos2¢ +(%’*~ + Gsin Bjsin 2¢ = (5} - i_)
| (4.45)
(—%—3-— Gsin 9)0032(3 +Geosfsin2¢ = u%l

where
G = ,85inC,.J,(C)) (4.46)

and Cp, C1 and 8 are the steady state solutions of Eq.(4.29). Solving Eq.(4.46) and

using the fact that sin2¢ and cos2¢ are not independent we arrive at

2 2
(glgS + gag«;) + (glg; + g2g4) =1 4.47)
(gs - gzgs)

where
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' i
=8 ——

£, =0 )

g2=3-3—+Gsin9
2

<8, =Gcosh
(94

g4mzl’
=% G

The boundaries of the unstable regions can then be determined by solving the coupled
non-linear equations Eqs.(4.33)-(4.35) and (4.47)-(4.48) using numerical techniques.
To illustrate the model we will analytically solve the case of zero ripple amplitude, i.e. &

= (. The set of equations (4.33)-(4.35) then simplifies to

aC, = %a@ sin 6

(G (1- o)+ a,C, sinf=Ka,cos 6 (4.49)
o,C, —a,C cos8=Ka,sin 8

from which one can obtain the amplitudes of C,, Cy and 6 as a function of the ripple

amplitude 8, the wavenumber of the ripple K, the driver strength F andthe detuning ratio

B

C,= Keya; (4.50
’ Zaz[af+(1ma2)2+a§(lwa2)] 0)
- 20,C,[Cl +K?] “.51)
'C(l-ay)-aK

sin @ = 2%C 4.52)

aacl

From Eq.(4.46) we see that G = 0 for & = 0 and hence Eq.(4.47) reduces to



2
[Z(az "111“]] rat=? (4.53)

Using Eq.(4.28) we finally obtain

R oy 22

W 1, 1|(F o

g SN 777 BLPRLID ) BN O

o5 (e))]
which describes the boundary of the parameter region for which the steady state solution
of the oscillator is unstable to half-harmonic pcrturbations. Here, from Eq.(4.26),

' = (1-2F)"*. The boundary of this unstable region is shown in Fig.(4.8). Also, the

half-harmonic resonance is consistent with the discontinuous first bifurcation (e.g.

Fig.(4.4).
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Figure 4.8.: Analytically calculated region in parameter space for which the
Lagrangean osciilator equation, in the absence of a ripple, is unstable to
half-harmonic perturbations.
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4.4 PIC-Code Results

The object of the particle in cell simulations was to verify (using at times scaled
parameters) that a period doubling (and if possible a route to chaos } can occur in the
generation of relativistic plasma waves through collinear optical mixing even when
competing effects are included.

In the simulations, the laser is incident from the left along the x-axis and is
polarized along z. To reduce the amount of computing time we have kept the ions
imobile. To model the density ripple the electrons and fixed ion background were
initialized at time t = 0 with a sinusoidal ripple.

Frequencies are normalized to the background (excluding the ripple) plasma
frequency wpg. Distances are normalized to the collisionless skin depth c/wpp. For
display purposes the wavenumbers are given in units of "mode number”, the number of
wavelengths of a given sinusoidal mode that will fit within the simulation box: kx(m.n.)
=kL/2% where L is the length of the box, in this case 210 c/wpg, chosen to accomodate
20 waves with wavelength 2n/Ak.

Three different simulations have been performed: a) rippled ion background at ¢t
= (J, b} no density ripple at t = 0 but with plasma temperature low enough so that the
short wavelength plasma modes produced through SRS are not Landau damped and
hence will produce a rippled plasma, and c) no density ripple at t = 0 and high plasma
temperature so that the short wavelength plasma modes are Landau damped. We have
chosen to use parameters in the PIC-simulation which have shown one bifurcation in the
analytic model. The plasma frequency is equal to one in simulation units while the two

laser frequencies are chosen to give a detuning ratio z—)p— =17:wy=5and wp =44111in
0
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wyp units. In simulation units the dispersion relation for light waves in a plasma is given

by
w’1o=1+k%2 (4.55)

The chosen laser frequencies give a plasma wave number Ak = (24)12. [(4.411)2 -

1]1/2 = 0.602. The ripple wavenumber is taken to be ﬁ = 30 and the ripple size € =
0.2. The peak laser intensity results in a normalized quiver velocity Ym%;q = (0.6. The

simulations were carried out in an essentially one-dimensional system on a 2 x 6000 grid
of normalized dimension 1 x 210 (in c/wp units). This implies that the system can
contain 20 plasma wavelengths oscillating at the beat frequency. A total of 120000
particles were used (10 particles per cell). The simulation was set up to record plasma
parameters every A(wpT) = 25 (every 1000 time steps) except for the @- spectrum which

was recorded every 2000 time steps.

4.4.1 Observation of Half Harmonic

The main diagnostic consists of the k-spectrum of the transverse electric (E;) field.
Indeed, if spatial period doubling occurs in conjunction with temporal period doubling
of the kind observed in the Lagrangean fluid model, the phase matching condition is
satisfied for the laser frequencies to scatter from these subharmonics of the plasma
wave. The k- spectrum of the transverse field should show Stokes and anti-Stokes lines
of the laser frequencies which are shifted by subharmonics of the beat frequency.

At'T = the simulation was initialized with the above parameters. At T = 150,
as shown in Fig.(4.9), the k-spectrumn of the transverse electric field E; contains Stokes

and anti-Stokes lines shifted by subharmonics of the beat frequency. Since these
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features will only show up in the electromagnetic spectrum when the phase matching

conditions are met, this implies that temporal period doubling is coupled to spatial period

doubling.
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Figure 4.9: k-spectrum of the transverse electric field as obtained
fromWAVE-simulation code at time step T= 150. The arrows denote
the location of the half-harmonics.

4.4.2 Necessity of Short Wavelength Density
Modulations

In the numerical model we have found that a range existed for density modulation

wavelengths: —A% had to be between 15 and 130 to observe period doubling. For the

stimulation parameters, plasma waves produced through Raman scattering or ion waves
produced through SBS or the ion acoustic decay instability would result in density
modulation with wavenumber ratio between 2 and 10. In order to verify that the

observed subharmonics are caused by the short wavelength density modulations due to
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the imposed ion ripple we have performed two null tcsts.. While in both tests the initial
ripple 1s absent, the thermal electron velocity at T = 0 was set equal to 0.025 ¢ in the first
test while in the second test it was set to 0.15 ¢. This higher plasma temperature
resulted in Landau damping of the slow phase velocity plasma waves and no period
doubling was observed. While SRS did modulate the density in the lower temperature
case, the k was too low and no period doubling was observed here consistent with the

analytic results.

4.5 Conclusion

A numerical study has been performed of the non-linear dynamics of the
generation of a plasma wave through colinear optical mixing in a spatially and
temporally modulated plasma. The numerical study was based upon the Lagrangean
equation of motion for a fluid element moving under the influence of an intense laser
pulse in the presence of an ion density modulation. The choice for working in a
Lagrangean frame arose from the need to rigorously treat the relativistic mass increase of
the fluid electrons for large laser intensities. It was shown that resorting to the weakly
relativistic approximation in an Eulerian frame leads to the erroneous conclusion that
beat-excitation of plasma waves can be modelled with a Duffing equation. The two non-
linear phenomena on which we have concentrated are bistability with the associated
hysteresis loops, and period doubling with the possibility of evolving into chaos. The
parameters which determine the amplitude of the plasma wave were chosen to be the
laser intensity, the plasma density, the damping rate, the wavelength and amplitude of

the density modulation.
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The obtained model-equation was solved numerically because the commonly
used slowly varying amplitude approximation precludes one from observing
subharmonics in the frequency spectrum of the wave amplitude. We find that in the
absence of a density modulation, when the laser intensity or the plasma density is varied
in time, the amplitude of the plasma wave as a function of either of these parameters
shows hysteresis loops. A regime in which the motion of the fluid element would show
spectral components at subharmonic frequencies of the driver frequency was not found.
However, the presence of a short wavelength density modulation (spatial frequency
typically more than 15 times the spatial frequency of the driver) considerably altered the
behavior of the fluid element. In certain regions of parameter space it was found when
sweeping the laser intensity in time two distinct regions exist: a) for relatively low
amplitude density modulations the fluid element undergoes bifurcations leading to
subharmonics in the spectrum followed by inverse bifurcations leading to a regular
periodic motion oscillating at the driver frequency; b) for large density modulations a
cascade of bifurcations occurred followed by a transition to chaos and consecutive
periodic windows. Through stroboscopic sampling of the displacement and velocity of
the fluid element the associated bifurcation trees and Poincare maps were generated. It
was observed that the first bifurcation is discontinuous, followed by a period doubling
route which seems closer to the classical route.

By following many Lagrangean oscillators simultaneously it is found that
wavebreaking occurs before the second period doubling, thereby limiting the validity of
the Lagrangean oscillator model. The origin of the first bifurcation is linked to the
stability of an equivalent generalized Mathieu equation to 1/2 subharmonic resonances.

Fully relativistic PIC-code simulations were carried out to further investigate the
bifurcation behavior Through analysis of the k-spectrum of the transverse electric field

E, and magnetic field By it was found that spectral components exist at half the spatial
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driver-frequency. Since these features will only show up in the electromagnetic
spectrum when the phase matching conditions are met, we concluded that spatial period
doubling must occur in conjunction with temporal period doubling. It needs to be
mentioned however that for these simulations a very extensive amount of computer time
was needed and that the ions had to be kept immobile. Future work should address the
issue of self-consistent density modulation caused by finite mass ions and the resulting
competition between this possible path to turbulence and phenomena such as Langmuir

collapse.
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Chapter 5

Conclusion

In this dissertation we have studied the interaction of a high power COy - laser
with preformed and tunnel-ionized plasmas. In the preformed plasma we have carried
out experiments designed to isolate the stimulated Compton scattering instability, We
have made the first detailed spectral measurements of stimulated Compton scattering
from a pre-formed plasma using spectrally and temporally resolved Thomson scattering.
For low density, the observed density fluctuation spectra were seen to convectively
saturate. For higher density, an initially narrow spectrum was seen to saturate and
evolve into broadband Compton scattering with frequency shifts once again near kve.
Using the code WAVE as a guide, we suggested that the saturation is due to a
reflectivity-induced modification of the electron distribution function. The implications
of this work are that SCS can be a useful density and temperature diagnostic. The low
reflectivity implies that this instability would not severly limit the coupling efficiency of

laser power on to targe!s in laser-fusion experiments.

Through experiments and particle simulations we have then studied the plasma

physics aspects of tunnel-ionized gases. Many experiments have been done using 1 um

lasers to understand the details of the process of optical induced ionization of single

atoms and molecules. Using a 10.6 um laser we have looked at the how the ionization

physics would determine the plasma characteristics of macroscopic plasmas produced

through tunneling ionization. The main predictions of the single particle tunneling
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model are: (a) the tunneling ionization process generates odd harmonics of the laser
frequency propagating in the direction of the laser; (b) fully ionized high density plasmas
can be produced with temperatures that are controllable by varying the polarization of the
laser and (c¢) the longitudinal temperature of the plasmas are much smaller than the
transverse temperatures.

Experimentally both odd and even harmonics were observed. The measured
level of the odd harmonics was found to be consistent with the theoretically expected
value from the tunneling ionization model. By varying the laser polarization from linear
to circular the odd harmonic emission was suppressed. However, the second harmonic
was found to be polarization independent. It is believed to be generated through the
steep radial density gradients of the tunnel ionization produced plasma.

The evolution of the plasma density and longitudinal temperature was measured
using Thomson scattering of driven SCS fluctuations. In contrast to the predictions of
the single particle tunneling model that high density plasmas can be produced with T)) <<
1 eV, the spectra of SCS induced fluctuations indicated that, at the time the SCS
fluctuations have grown enough to become detectable, the longitudinal temperature was
typically 75 eV and seemed to further increase with time. Furthermore instead of
obtaining fully ionized plasmas, we found that the plasma densities were clamped below
= 10-3 n,.

As an independent density diagnostic we tried to resonantly excite a plasma wave
using a two frequency CO3 - laser beam. Only for a line pair requiring a resonant
density less than 10-3 n; were we able to drive a beat wave in this tunnel-ionized plasma,
as witnessed by a SBS mode-coupled feature in the Thomson scattering data. This
indicated again that the density was clamped to a lower than expected level. We then
looked into the possibility of density clamping through ionization induced refraction.

Experimentally we found that strong refraction of the laser beam occurred for fill
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pressures corresponding to fully ionized plasma densities higher than 103 nc. By
incorporating concepts from the paraxial ray approximation into Gaussian optics we
derived a scaling law for density clamping due to refraction, which was verified by self-
consistent particle-in-cell simulations using WAVE.,

To obtain an independent estimate of the plasma temperature and to explore the
possibility of plasma temperature control through polarization of the ionizing laser light,
soft X-ray emission above 800 eV was measured. The inferred temperatures were
4502150 eV (180150 eV) for plasmas produced though a circularly (linearly) polarized
laser beam. These temperatures are within a factor of two with what might be expected
from a laser beam which has it's intensity clamped close to the ionization threshold due
to refraction. To further verify the hypothesis of temperature control, we looked at SCS
spectra for different ellipticities o of the polarization. It was found that for & > 0.6 all
high frequency electron fluctuations were suppressed. These observations are
consistent with an increase in Tj| in going from linear to circularly polarized light.
However, the inferred values for T} were still anomalously higher than the single-
particle predictions.

The origin of the initial T|| and its further increase with time was studied through
simulations. In the single particle regime (n/n¢ = 10-8) the code reproduced the same
ring shaped electron drift velocity distributions as calculated from the tunneling model.
For densities high enough for space charge effects to become mportant, 1-D simulations
showed SRS to grow to large levels consistent with a low T). In 2-D however SRS
was suppressed because Ty at the end of the jonization phase was already large. Instead
SCS occurred at a reduced level, consistent with experimental observations, We then
put forward the idea of stochastic heating in these space-charge dominated plasmas to

explain the large intial Ty 2-D simulations of space-charge dominated plasmas indeed
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showed that, at the end of the ionization phase and after the laser pulse was gone, the
transverse distribution functions were much more smeared out and Ty much higher.

To explain the further increase with time of T} we considered the effect of the
isotropization of the tranverse distributions through the Weibel instability and found that
this effect could indeed account for our experimental observations.

Both the fact that the density is clamped due to refraction and the measured high
plasma temperature could have significant implications for X-ray recombination laser
schemes. However the scaling of our long wavelength laser parameters towards shorter

wavelength lasers is not straightforward and needs to be looked into.

The possibility of exciting plasma waves in a plasma which has a time varying
density and could have short scale length density modulations, led to a study of the non-
linear dynamics of such waves. We numerically solved a relativistic Lagrangean
oscillator equation which contained the essentail physics involved in the beat excitation
process. The free parameters in this model were the amplitude and wavelength of the
density modulation, the ponderomotive strength, the ratio of plasma frequency to beat
frequency and a damping rate. A variety of non-linear phenomena were observed such
as bistability and period doubling bifurcations in certain regions of parameter space.
The phenomenon of wave breaking was found to invalidate the Lagrangean oscillator
model beyond the first bifurcation but PIC-code simulations conﬁrrped the possibility of

the plasma wave to undergo a first bifurcation.

In future experiments with the CO2z-laser many aspects of the tunneling
ionization of gases still remain to be studied. The main improvement in the experiments
will come from the possibility of producing much higher densities. In fact gas-jet

experiments are currently underway. Although we did attempt to measure thermal
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spectra in the experiment, the low plasma density and the limited probe beam power
precluded us from observing scattering from thermal fluctuations. At the higher plasma
densities the light level in the themal spectra could possibly increase by two orders of
magnitude. Since many of the experimentally studied phenomena depend on the detailed
shape and evolution of the electron distribution functions, a simultaneous measurement
of the Thomson scattering spectra from fluctuations driven through parametric
instabilities and from thermal fluctuations could address the following issues:

* the self-induced modification of the longitudinal distribution function through the

stimulated Compton scattering instability,
* the effects of a large quiver velocity on the thermal Thomson spectra,
* a direct measurement of the time evolution of the transverse and the longitudinal

distribution functions and their dependence on laser polarization.

The higher plasma densities would also permit one to measure the rate of
ionization by looking at the blue shifting of a probe beam due to a time varying plasma
density (Wood 1988).

Harmonic generation due to x®) could possibly increase many orders of
magnitude since both the density and length of the gas medium can be optimized to get a
higher efficiency. This could then allow one to look at the non-linear optical properties
of atomic and molecular gases and verify if the excitation of atomic and molecular
transitions could exhibit chaotic behavior and lead to supercontinuum generation (Alfano
& Shapiro 1970a,b). The idea here is that, when molecules are excited by an intense
laser, the displacement of the nuclet can become large enough for anharmonic terms to
become important. The potential associated with this restoring force can be modelled as

a Morse potential (Herzberg 1967) which can be reduced to a Duffing-like equation.
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Finally, lasers able to generate ultra-high intensities (voge/c ~ 0.5) required for
the experimental observation of subharmonic generation in the beatwave experiments
already exist in several laboratories around the world. The more difficult condition to
meet in order to see a period doubling cascade followed by chaos is not the intensity of
the e.m.-waves but the large amplitude of the density modulation. If indeed the electron
plasma wave can follow this route to turbulence, it could be an alternative for the well

known theoretical Langmuir collapse scenario (Goldman 1984).
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Appendix A

Experimental Set-Up

A.1 CO2 -Laser System.

The CO» laser system is shown in Fig. A.1. The laser oscillator has a high pressure
section (p = 24 psi) and a low pressure section (p = 50 Torr). This hybrid configuration
allows control of the longitudinal modes on which the laser will oscillate. The laser can
oscillate on different wavelengths (10.6pm, 10.3 gm and 9.6 um) which are controlled
(a) by moving the rear mirror with a piezo electric crystal to tune the cavity length and
(b) by using an intra-cavity absorber cell. The output of the master oscillator is a 150 ns
long pulse with a peak power of 1 MW, The pulse is shortened to about 70 ps using the
free-induction technique. The key components here are (a) the atmospheric pressure
sparker which chops off the back part of the pulse and (b) a tripple pased hot CO3p
absorber cell which absorbs the front part of the pulse, leaving a 70 ps short pulse with
roughly the same peak power as the long pulse. The pulse passes then through a pre-
amplifier followed by tripple passing a high pressure (24 psi), large aperture amplifier
from here on refered to as the MARS laser. The output pulse has a rise time of 150 ps
and a fall time of 350 ps and contains up to 100 J. The focusing optic is an f-10 off-axis

parabola, The final spot size is about 340 um diameter.
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A.2 Thomson Scattering System.

The Thomson scattering equipment uses a frequency-doubled YAG laser at a
wavelength of 532 nm which puts ocut about 170 mJ contained in a main pulse of 5 ns.
The beam is focused onto the plasma using f-20 optics. The k-matching angle for
diagnosing the 2 k, fluctuations driven by the COy - laser is 6°. The scattered signal is
spectrally resolved in a 64 cm spectrograph using a holographic 1800 grooves/mm
grating, and time resolved with an IMACON 500 optical streak camera. The streak
image is captured using a low noise cooled CCD-camera (576 x 384 pixels) and sent to a
PC for image analysis. The spectral resolution is 0.2 A/pixel and the temporal
resolution is 2.5 ps/pixel. The synchronization of the YAG laser and the short pulse
CO9y pulse was done as follows: using a beam splitter at the exit plane of the hot COj -
cell, a small amount of the short pulse was sent to a room temperature Hg-Cd-Te
detector (RADEC detector). The RADEC sent out an electrical pulse (200 mV peak)
which was amplified with a low jitter (<100 ps) avalanche amplifier to 35 V and split
into 4 channels. One of those channels triggered the Marx bank of the YAG laser Q-
switch and two of the other channels where used to trigger the streak cameras. The final

jitter was measured to be around 200 ps.
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Figure A.1: CO, - laser system
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Appendix B

Fluid Equations in an Ionizing Plasma

We start from the Vlasov equation for a one-particle distribution function to which a
source term, S(r,p,t), has been added to model the time varying plasma density, and the

relativistic equation of motion of an electron:

of of x B of

B g E+ PRy o syt B.1

ot ¥ my arHI( +Ymoc)8p (r,p,t) (B.1)

p=q(E+22]=% meyw) (B.2)

r=v,v=—+—. (B.3)
Ymo

where my and q are respectively the rest mass and charge of an electron, yis the Lorentz
factor, f is the one particle distribution function, and E and B are the electric and
magnetic field

Furthermore we assume the plasma to be perfectly cold , i.e.

f(r,p,1) = £(r.0)  (p - P) where P = P(r,0). (B.4)

To obtain fluid equations we take moments of Eq. (B.1).

The mean density and velocity are respectively defined as:

400

n= d3p f (B.5)

-00

and
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(B.6)
00
Taking the zeroth order moment and using Egs. (B.5) and (B.6) we obtain the usual

continuity equation with the inclusion of a source term:

on(r,p)

% +V.[n (rt)ww&]—ln(rt) (B.7)

Taking the first order moment we find:

—{P(rt)n(rt)]+ar[l;(“)n( ol - q{EJ—}n(rt) =0 (B.8)

But the first term in Eq. (B.8) can be written out as

oP an .
ot { nl= nBt ot (B9)

Multiplying Eq. (B.7) by P and subtracting it from Eq. (B.8) we obtain as equation of

motion;
Q[P(r,t)]waﬂw [EM] +APrO=0 (B.10)
ot or Y mgC

where we used the definitions of rand v given in Eq. (B.3).
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Appendix C

Eulerian Analysis of Large Amplitude Relativistic
Plasma Waves

We re-examine the consequences of making the weakly relativistic approximation when
investigating chaotic solutions. We rederive an equation of motion for the longitudinal
electric field using this weakly relativistic approximation and then make the connection
with the well known Duffing equation (Duffing 1918) for a non-relativistic particle

¥2 v
moving inside a potential well V() =",""",", where WV is the amplitude of the

displacement. Using a rotating Van der Pol plane (Thompson & Stewart 1986) we
calculate the steady state amplitude of the displacement as a function of driving strength
and detuning ratio. The Duffing like equation is then solved numerically and the results
compared to the analytically obtained frequency response function. The validity of the
Duffing model is then assessed and it is found that this model can not be used to study
the interesting regime of large driving strengths where the non-linear dynamics dominate

the system behavior.

C.1 Eulerian Analysis of Electron Plasma Waves

Consider the fluid equations for a plasma in which the density is changing in

time due to collisional ionization at a rate A. The equation of continuity and the equation

of motion for a fluid element are respectively given by
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NCD L (a1 =nn(ry (C.1)
ot mgY
and
9 b +vZEY g PrBy iy s PEy =0 (C.2).
ot or Y mec

The two fluid equations (C.1) and (C.2), complemented by the Maxwell's equations

VE=-47me(ne-n;j (C.3)
10E 4
VxB= E_é; - —-?C-IE (NeVe - NjVi) (C.4)
ViE=- 198 (C.5)
C ot

are used to derive the equation which describes the evolution of the longitudinal electric
field generated by beating two transverse linearly polarized electromagnetic waves in a
plasma. In these equations ne (nj)and ve (v;) are the electron (ion) fluid density and
velocity, pe is the electron fluid momentum and all other guantities have their usual
meaning. |

Let us assume that the ions are immobile and analyze the set of equations in an
Eulerian coordinate system. Combining equations (C.4) and (C.5) we obtain:

1 92 d7e 9
(V2. ?ﬁ -VV.)E =- g& (Neve) (C.6)

We now define N = Ny + ne , where N is a background steady state value and ng is

oscillatory. Equation (C.6) becomes

d
(V2 - C—ﬁ -VV.)E = - =z (No—ve+ "é”; (neve)) (C.7)

From the equation of motion we obtain
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Ve Vve=-——(I- "”“f)(E "e"B - Ay mg ve) (C.8)
ot Y mg

whcre; is the unit tensor.

Substituting equation (C.8) into equation (C.7) we find

1 02 4ne 0

(V2- —é——VV YE=- 2 {8 (neve) - No Ve V Ve -
Noi B
Y;eq-";;a (E +2= v ymo ve) ) (C.9)
4]

For the weakly relativistic case we expand Yy "} :

2
yi=\1- (3 1 (C.10)

The wave equation becomes

(V?' —1—§T-VV )E“‘ﬂgﬁ %(neve)“Nove-vve'

2
$m0‘5@ el Yoty gy Y2 By,
A Noe(-~“S5Sv) | (C.11)

The evolution of the longitudinal component of the electric field is then determined by

2 1 wv,2 9
{ 8:2 %(‘% - 5 (8] JEx=dre {g(nevex) -

No ve. V vex +

X+

2 2
A N e vey (1 —2 1Yy (C.12)

Following Mori's work (Mori 1987) we use the Mitropolsky-Bogoliubov perturbation
technique to obtain an equation of motion for the longitudinal electric field value. The

wave equation becomes:
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82 .1 v 2 2 1 2 8
(5 rlo+hi-3€ leol - j@?+at]] 2+

2 2
ot 11-2¢9 el - L@+ 0921 } €=

_c_(l1+&2

2 .
Vo > wp~ sin (Ak x - AwT) (C.13)

. . v eE; . .
where vg is the phase velocity of the wave, ¢; = *‘QCS—C = G)I is the normalized non-
mjc

relativistic oscillatory velocity of the electron in the laser field and © is a
phenomenological damping term to accommodate for such effects as mode coupling to

slow waves. Equation (C.13) can be rewritten as:

2
%mgi+(C1+C2!\P|2)z—qj+(C3+C4IW|2)\?=FSiﬁ(Ak“A(DT) (C.14)
t t

with
c1=0+A(1-1 (a2 +a?)

2
ca=-hyCH)

3= [1-Lai? + 00 ]
2 2
co=ap 129 Teol ]

Under this form one recognizes the equation of a driven oscillator with both non-linear
damping ( a Van der Pol type oscillator) and non-linear spring constant ( a Duffing type
oscillator ). In the next section we focus on the case in which G » A, ie. the Duffing

oscillator.
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C.2 Duffing Model of Electron Plasma Waves

It is well known that the Duffing equation exhibits the jump phenomenon and that a
period doubling route to chaos can exist (Holmes & Rand 1976, Huberman &
Crutchfield 1979). In order to verify that these same phenomena can be observed for
large amplitude relativistic plasma waves in an actual collinear optical mixing
experiment, we need to establish a parameter regime which is accessible in the
laboratory. Therefore it is necessary to develop an understanding of the parameter space
and fundamental characteristics of the canonical Duffing equation. Furthermore we have
to ascertain that the aforementioned effects occur for weakly relativistic waves, as
assumed in our derivation of the equation of motion, and for wave amplitudes less than
the wave breaking limit.

In what follows we assume that the fluid element excursion is small compared to
the beat-wave wavelength and apply a capacitor model for the driver term. The beat-
wave equation can then be written under the standard Duffing form with a cosinusoidal

driver term :

WA d
a2

d‘P

+T =+ a2 ¥ + B oy W3 = Fcos (it (C.15)

where all parameters are real and I' = G . This equation models the motion of a particle

with charge mp? moving in a potential of the form

2
VF) = a X +5‘}f : (C.16)

The turning point of this potential is found from

gX“OOI“POm :""g""
d¥

B

Renormalizing time with respect to '\ ¢ o)p2 and space with respect to the turning point

distance ¥, we obtain
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2
%+T%+ 7 -473=Fcos ®OT (C.17)

where = and T=@pt.

2%,
We rewrite equation (C.17) as a set of first order non-linear differential equations where

the position x1, velocity xp and 7 are taken as the independent variables:

>:; = X2
x°2:~x1+4x13-rx2+Fcosl (C.18)
1=Q

where | A | is assumed small, A= (T, F, pl;p=1- 0?2 (C.19)

Let us first set F equal to zero so that equation (C.18) reduces to an autonomous

equation. The fixed points are given by

x1s =0, x2¢=0and x1s=:t%,xzs=0 (C.20).

Performing 4 local stability analysis it is straightforward to show that , for I'20 the
first fixed point is a sink while the two others are saddle points.

We now return to the non-autonomous equations: in case |2 | small one can use the
method of averaging to analyze the system.

Consider therefore a Van der Pol plane (z1, z2) rotating at the frequency  (Thompson

& Stewart 1986):

z] = X1 cos 07T - 2 gin 01
®
. X2
Zo = - Xy §in OT - 6 cos WT (C.21)
or equivalently

X1 = 2] oS OT - z7 sin OT
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x7 = -£2 [ z} sin OT + 23 cos WT] (C.22)
Differentiating equation (C.21) with respect to time, substituting equations (C.18) and
2 .
(C.22) and time averaging over one period, i.e T=0 @f results in

)

1
=—[-pzp-T Wz1+3 2 4 zp2
71 20)[ P z2 Z1 22 (217 + 229 ]

£2=i«1-03«{pzl—rwzz—321(212+222)"ﬂ (C.23)

Using a polar coordinate system

Zy=TC08 0

77 =71 sin 6 (C.24)

equation (C.23) becomes

o o

= 71 €08 0+ 2zsin 0

I

x2—9(~r(})r—}:sin8) (C.25)

0 = - 21 5in 6 + 27 cos O

1

= 2T}(pr-}-Br?’-Fcose)

In order to find the steady state amplitude A and phase @ of the oscillation we have to

evaluate the fixed points of equations (C.25) :

=0 = Fsin®=-TwA (C.26)

=0 = FcosP=pA-3A3
Therefore, the amplitude of the steady state oscillation 1s found from
k2

AS+5p A% +5(p2+ T2 02) A2 T3 = (C.27).

and the phase with respect to the driver is given by
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an d=—— 1O (C.28)

p-3A2

The roots of this cubic polynomial in A2 as a function of @ are plotted for I'= 0.4 and F
respectively equal to 0.10, 0.11, 0.12 in Fig.(C.1).

The upper branch is associated with a steady state motion around the points x3 = i%
while the lower branch is associated with motion around the point x; =0. AsF
increases for a given damping rate I we notice that the two branches connect allowing
the steady state amplitude of a particle with equilibrium position around x1 = 0 to build
up to amplitudes close to the unstable points.

To study the detailed dynamics of the system , i.e. not just follow the motion of
the particle with frequency equal to the driver frequency, we solved equation (C.22)
using a fourth order Runge-Kutta methoC. As seen from Fig. C.1, for F=0.11, I'=0.4
the two analytic steady state solution branches are not connected and in the numerical
solution we did not observe any bistable behavior.

For larger driver strengths the two branches do connect and one is able to build
up the amplitude of the oscillation to values close to the unstable limit. We observed
period doubling when the amplitude of the displacement approached the turning point
amplitude, for driver frequencies close to ®w= 0.5. To summarize, it is found that a
hysterectic loop develops when the lower branch nearly touches the upper branch and

that a period doubling route to chaos only develops when the branches are connected.
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Stesdy stste wawr amplitude

S1eady suste wave amplitede

Steady rate weve ampliityds

Figure C.1: Steady state amplitude versus frequency for driver strength
F respectively 0.1, 0.11,0.12 and damping I'=0.4.

130



The amplitude associated with the onset of both phenomena is close to the tuming point
arnplitude for this potential.

At this stage we will asses the validity of our model. The wave equation was
derived in the weakly relativistic limit i.e. the Taylor expansion of the Lorentz factor was
terminated after the second term. The resulting restoring force in the wave equation is
then indeed equivalent to the restoring force for a softening spring. In a Lagrangean
frame it is straightforward to show that the equation of motion in the absence of
damping for the momentum of relativistic plasma waves is given in it simplest form by

s JHPNG IO S
d@ m d{

where Fyi is the ponderomotive force. The restoring force can now be derived from a

(C.29)

potential

Vp)=V1 + p2 -1 (C.30)

In Fig. 4.1 we showed the exact potential as given by equation {C.29) and its Taylor
expansion up to 2nd order. As can be seen from Fig.4.1, the two potentials start
differing significantly beyond Ipl = 1 and the dynamics associated with the two potentials
is completely different ; while the exact potential has only one stable equilibrium point,
its Taylor expansion has one stable and two unstable equilibrium points. And, as seen
from our previous analysis the period doubling occurs for amplitudes close to the

unstable points.

To summarize, the rich non-linear behavior (i.e. period doubling route to chaos
and bistability) exhibited by the Eulerian model-equation of the longitudinal electric
field, is an artefact of the weakly relativistic approximation used in the derivation of

equation (C.14).
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